
Finding Loaded Classes

Know What Code You're Executing

A JavaGeeks.com
White Paper

Ted Neward
http://www.javageeks.com/~tneward
tneward@javageeks.com
29September2001

Abstract

Understanding what version of your code is executing in production can be the difference between a
solved bug and an embarrassing admission of ignorance. Too many times developers are caught up
defending code that isn't properly migrated out to Production or a customer's machine. In some extreme
cases, developers (and/or tech support staff) are expected to support code on client machines with no
idea of precisely what version of the code is running there. Add to this mess the usual variety of patches,
minor version releases and daily builds, and you have a recipe for complete disaster, both from a
personal and professional standpoint.

One of the common means to address this problem, coming to us from the C/C++ world, is to embed a
string in a compiled object file, which then gets loaded into the compiled executable. "In the field",
developers and/or tech support staff can run a utility (usually the Unix "strings" command or some
variant thereof) to see the exact versions of each .C/.CPP file used to build the code the customer is

currently running. Unfortunately, because Java doesn't support static linking, the same approach doesn't
work for us; however, we can adapt it (through one of two ways) to provide much the same level of
support.

Problem discussion

Maintenance. For many developers, it's believed that responsibility for code ends with the infamous
"Ship It!". Experienced developers, however, implicitly and intuitively realize that life only gets more
interesting once the code is shipped--now comes the maintenance phase of the software lifecycle, one
which usually drives us all nuts.

Diagnosing problems is in of itself a fine art, usually involving the principle of elimation--keep removing
variables until only one possibility must remain, and thus, must be the bug. We thus only have to remove
possibility after possibility until only one possibility is left, fix the offending line of code (or broken card, or
malfunctioning peripheral), and the problem is solved. Unfortunately, this principle suffers from a single
problem:

It's never that easy in practice.

Back when software consisted of simple instructions executed directly by the CPU in a deterministic
fashion, it was always possible to sit down with a sheet of paper in one hand, a hardcopy printout of the
code in the other hand, and reason out precisely what the CPU was doing from one moment to the next.
Fast-forward to circa 2000, however, and we find an incredibly complex environment in which multiple
Threads can concurrently (and nondeterministically) access the CPU and execute code. I/O operations
can fail, owing to minute differences between one machine and the next, something so simple as a
directory, assumed to be available, not being present. Trying to nail down the differences between "my
machine" and "your machine" can be a serious undertaking in of itself.

All of this becomes an order of magnitude more complex, however, when we can't even guarantee that
the code running on "your machine" isn't even the same version is the code running on "my machine".
Source-code control systems, like Visual SourceSafe, PVCS, or CVS, solve some of this problem, by
associating versions of the source code with human-friendly labels like "1.25" or "Release 2.4" or
"Build2000.02.14". That's only the first step, however--developers still need some way to identify the
version of the code currently executing. Moreover, the ability to resolve the version of the code currently
executing back to the version of the source file that produced it goes a long way towards finding--and
ultimately eliminating--bugs.

Solution discussion

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 2 By Ted Neward

A historical solution. This problem is not a new one. Developers struggled with this same problem as
early as ten years ago (if not sooner), back in the heyday of C++, and numerous suggestions came as
solutions to the problem. One such suggestion came from [Davis93] : create strings with version
information within it, and embed the string inside the compiled file:

/* C example */

static char[] rcsInfo = "Version 1.0";

By marking the char array "static", the string is private to the .C file in which it was declared; this way,
multiple .c files can each have their own version information string embedded within it:

/* a.c */

static char[] rcsInfo = "RCS: a.c: Version 1.0";

/* b.c */

static char[] rcsInfo = "RCS: b.c: Version 2.1";

/* c.c */

static char[] rcsInfo = "RCS: c.c: Version 1.7.1.4";

Now, when these three .c files are compiled into an executable, the executable will contain1 these three
strings embedded inside the executable's file format, usually somewhere inside the code sections. Tools
such as Unix's "strings" utility can scan through the executable file's bytes, looking for the versioning
strings. In [Davis93] , Stephen Davis suggested creating a specific version-scanning tool, which
searched the executable for a specific string prefix, such as the "RCS:" string above2. Then, when
executing this version-scanning tool, a developer could see precisely which version of the source files
the user was running:

/* main.c */

#include <stdio.h>

// Prototypes from one.c

void one();

// Prototypes from two.c

void two();

static char rcsInfo[] = "RCS: main.c, Version 1.0";

int main(int argc, char* argv[])

{

one();

two();

}

/* one.c */

#include <stdio.h>

static char rcsInfo[] = "RCS: one.c, Version 1.0";

void one()

{

printf("one called\n");

}

/* two.c */

#include <stdio.h>

static char rcsInfo[] = "RCS: two.c, Version 1.0";

void two()

{

printf("two called\n");

}

C:\Projects\Papers\FindingLoadedClasses\code\c>cl main.c one.c two.c

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for 80x86

Copyright (C) Microsoft Corp 1984-1998. All rights reserved.

main.c

one.c

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 3 By Ted Neward

two.c

Generating Code...

Microsoft (R) Incremental Linker Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

/out:main.exe

main.obj

one.obj

two.obj

C:\Projects\Papers\FindingLoadedClasses\code\c>main

one called

two called

Although it's not visible at main.exe's execution time, main.exe contains three constant strings: "RCS:
main.c, Version 1.0", "RCS: one.c, Version 1.0" and "RCS: two.c, Version 1.0". Verify this by opening
your favorite hex editor3 and see the three strings, starting at (for this example-your numbers may vary
depending on compiler options) byte 0x000060E5 and running through 0x0000613C.

Now, when we create a new version of any of these source files, we modify the versioned string so as to
keep track of the source versions as development continues:

/* two.c */

#include <stdio.h>

static char rcsInfo[] = "RCS: two.c, Version 2.0";

void two()

{

printf("two called one more time\n");

}

And, again, compiling and examining the strings stored in the executable file shows that this version of
main.exe used the 2.0 version of two.c when it was built.

Keeping track of these version strings will be something of a pain, however--every time a developer
makes a modification to a source file, the version string needs to be modified. This is exactly the sort of
painstaking detail that programmers (as a general rule) loathe and usually forget to obey. Fortunately,
there's an easy way to keep the versioning information entirely accurate without requiring a single iota of
effort on the developer's part.

Using VCS keywords. With most source-code control systems, upon checkin (or merge), the
source-code control tool can scan the source file, looking for particular keywords and expand them with
versioning information. For example, Visual SourceSafe recognizes the "$Revsion: $" string as a
keyword, where VSS will replace the string with the same string plus the actual VSS revision number for
this checkin. So, for example, if we place the following static character string into a file "a.c",

static char rcsInfo[] = "$Revision: 1.1 $";

every time "a.c" is checked back into VSS, the $Revision: 1.1 $ string will be updated to the new VSS
checkin version number:

static char rcsInfo[] = "$Revision: 1.1 $";

By itself, the "$Revision: 1.1 $" keyword does not give us all the information we need; specifically, we'd
like the name of the file and a unique prefix to come in front, so that a string-scanning utility can find all
of the occurrences of the version-embedded strings within the executable. So, we make use of a few
other VSS keywords:

static char rcsInfo[] = "RCSInfo: $Logfile: $ $Revision: 1.1 $";

Now, when this module is compiled into an executable, the string

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 4 By Ted Neward

"RCSInfo: $Logfile: a.c$ $Revision: 1.1 $"

will be embedded inside of it.

Each executable generated will have implicit tracking against the sources that were used to create it,
and developers can find that information simply by examining the executable itself. Although other tools
(like Davis' "WHATSIT" utility he describes in [Davis93]) can be used, developers can, in a pinch, simply
open the executable directly with Notepad or WordPad to find the strings by hand.

End-user assistance. Developers won't be the only ones around to gather this information, however:
the executable will often be in end-users' hands, away from the skilled eyes and hands of developers.
Although tech-support staff could ask end-users to open the executable in Notepad, there's another,
better, way.

Instead of forcing users to use an external utility to view the RCS informational strings, developers can
bundle such a utility directly inside the executable itself, usually under some menu item under
"Help|About" or something similar. The utility can open the executable directly, scan through the bytes
looking for the rcsInfo strings, and display the results generated into a dialog box.

All in all, this is a pretty workable solution. Developers have the ability to verify which exact version is in
use in the field or in Production, and this information can be communicated via tech support staff quickly
and fairly easily. There's only one problem with this admittedly C++-centric discussion so far: it doesn't
translate directly into Java.

When laziness hurts. To be certain, nothing prevents us from using the first part of the C/C++ system,
that of creating a string in the class that contains the versioning information:

public class Main

{

public static final String RCSINFO = "RCS: $Logfile: $ $Revsion: $";

// . . .

}

Again, when Main.java is checked into VSS, the Revision keyword will have its contents expanded with
the current version number. Within Java, we need to be a bit more specific, however; since the String is
associated with a class, instead of a file, each and every class within a given .java file must have a
similar String:

// Main.java: Contains Main and a few other helper classes

//

class HelperOne

{

public static final String RCSINFO = "RCS: $Logfile: $ $Revsion: $";

// . . .

}

class HelperTwo

{

public static final String RCSINFO = "RCS: $Logfile: $ $Revsion: $";

// . . .

}

public class Main

{

// . . . as before . . .

}

Note that, in all likelihood, only top-level classes and/or inner classes of some importance would actually
carry versioning strings-placing versioning strings on anonymous classes not only would be awkward,

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 5 By Ted Neward

but retrieving the information from an anonymous class would be difficult. In fact, retrieving the
RCSINFO string itself is going to be difficult in just about every incarnation.

Recall from [insideVM] , [LiangBracha] , [sbjp] and other sources, that Java is a dynamically-loaded,
lazy-loading system. This means that, unlike C and C++, classes are not loaded into the system unless
directly referred to by the currently-executing code. Thus, given a normal Java deployment (a single .jar
file), even though it would be possible to scan the .jar file for string constants, there's still no guarantee
that those are the classes that are used at runtime4. What's needed is an ability to examine the classes
loaded at runtime, to extract the version information at that point.

Unfortunately, this yields an even larger problem: there is no documented API to provide a list of all
classes loaded via a particular ClassLoader. While it's certainly possible to create a custom ClassLoader
to provide this information, it's impossible to make these modifications to the standard ClassLoaders
used by Java2 when loading code from the CLASSPATH or Extensions directory5.

There are two possible solutions to this problem: use a Java hack to slip past the access-protection
layers and read data directly from the java.lang.ClassLoader class, or else require slightly more
work on the developer's part through a third class.

Solution One: Hack-O-Rama. When writing a custom ClassLoader, you extend the
java.lang.ClassLoader class. Any and all ClassLoaders (with the exception of one, which we'll
discuss shortly) must extend this base class in order to work correctly. Looking within the
java.lang.ClassLoader class source6, however, reveals an interesting tidbit:

/*

* The classes loaded by this class loader. The only purpose of this

* table is to keep the classes from being GC'ed until the loader

* is GC'ed.

*/

private Vector classes = new Vector();

A few lines later, we run across the only place where this Vector is referenced from within code (the
string "classes" shows up all over the place, but mostly in comments):

/*

* Called by the VM to record every loaded class with this loader.

*/

void addClass(Class c)

{

classes.addElement(c);

}

It's that last comment that truly intrigues us--"Called by the VM to record every loaded class with this
loader." Verifying this requires more than a trivial amount of work7, but reveals that this is, in fact,
true-every class loaded by a ClassLoader-extending class ultimately is registered in this Vector.

Here, then, is the information we're looking for. Getting to it, however, requires work8. Because the
Vector is marked private on the ClassLoader class, normally the JVM will not allow us to reference it,
either from outside the class or from a derived class. Another approach is necessary.

Java provides such an approach, via the Reflection API9. By first obtaining a ClassLoader instance, then
using Reflection to dig within it and retrieve that "classes" field, we can effectively bypass the Java
access-protection mechanism and get a list of all the classes loaded by a particular ClassLoader:

import java.util.*;

public class ListAllLoadedClasses

{

public static Iterator list(ClassLoader CL)

throws NoSuchFieldException, IllegalAccessException

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 6 By Ted Neward

{

Class CL_class = CL.getClass();

while (CL_class != java.lang.ClassLoader.class)

{

CL_class = CL_class.getSuperclass();

}

java.lang.reflect.Field ClassLoader_classes_field =

CL_class.getDeclaredField("classes");

ClassLoader_classes_field.setAccessible(true);

Vector classes = (Vector)ClassLoader_classes_field.get(CL);

return classes.iterator();

}

public static void main (String args[])

throws Exception

{

ClassLoader myCL = ListAllLoadedClasses.class.getClassLoader();

while (myCL != null)

{

System.out.println("ClassLoader: " + myCL);

for (Iterator iter = list(myCL); iter.hasNext();)

{

System.out.println("\t" + iter.next());

}

myCL = myCL.getParent();

}

}

}

In this code, main() first obtains the ClassLoader instance used to load classes off of the CLASSPATH
(called the AppClassLoader; see [sbjp] for details), and passes it into list() to obtain an Iterator from
the classes Vector stored in the java.lang.ClassLoader base. Once main() has printed out all the
classes referenced by this Iterator, it then finds the parent ClassLoader to AppClassLoader and repeats
the operation.

Within list(), we take the ClassLoader instance passed in, and walk the superclasses back until we
get to java.lang.ClassLoader 10. We use Reflection to find a field called "classes" on the
java.lang.ClassLoader type definition, then use the get() method of the java.lang.reflect.Field
class to retrieve the value of the classes field on the ClassLoader CL. This is the Vector we've been
looking for; we cast the return value of get() to a Vector, call iterator() on it and return the
result--an Iterator over the list of classes loaded by this ClassLoader.

Note that this code will not list any classes loaded by the bootstrap ClassLoader--because the bootstrap
ClassLoader is represented within the JVM space as a null ClassLoader reference, any attempts to
obtain the classes Vector will fail, because the reference we're attempting to dereference is null. (In all
honesty, there's not even any assurance that the bootstrap ClassLoader even has the classes field
buried within it--the bootstrap ClassLoader is implemented in native code for most VMs, anyway.)

Running this code directly ("java ListAllLoadedClasses" from the command-line) yields a list of exactly
one class: ListAllLoadedClasses. As an experiment, add a few calls to other local "helper" classes to
main() and re-run, just to verify that we do, in fact, list all classes loaded from the AppClassLoader:

// ListAllLoadedClasses.java

//

public class ListAllLoadedClasses

{

// . . . list() unchanged . . .

public static void main (String args[])

throws Exception

{

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 7 By Ted Neward

One one = new One();

Two two = new Two();

// . . . rest of main() unchanged . . .

}

}

// One.java

//

public class One

{

public One() { System.out.println("One constructed"); }

}

// Two.java

//

public class Two

{

public Two() { System.out.println("Two constructed"); }

}

C:\>java -classpath classes ListAllLoadedClasses

One constructed

Two constructed

ClassLoader: sun.misc.Launcher$AppClassLoader@404536

class ListAllLoadedClasses

class One

class Two

ClassLoader: sun.misc.Launcher$ExtClassLoader@7d8483

Now that we have the Class instances representing the classes loaded by this ClassLoader, obtaining
the RCSINFO strings is another simple matter of Reflection:

// Given an Iterator from ListAllLoadedClasses.list(), find the

// RCSINFO String, if present

//

public String extractRCSInfo(Class c)

throws NoSuchFieldException, IllegalAccessException

{

java.lang.reflect.Field RCSINFO_field = c.getDeclaredField("RCSINFO");

return (String)RCSINFO_field.get(null);

}

Note that if the RCSINFO field is not present on the class, a NoSuchFieldException will be thrown. In
a production-quality implementation, extractRCSInfo should obtain the Field reference inside of a
try/catch block, and return an empty String if the field is not present.

Solution Two: The Versions class. Hacking this way leaves a bad taste in my mouth, personally. Just
because we can do this doesn't necessarily mean we should, for reasons I'll enumerate later (see
"Consequences", below). There is another approach, one which requires slightly more work on the part
of developers, but doesn't require the use of Reflection to obtain the information desired.

The key actually comes from the Singleton pattern (see [gof] for details). By using a Singleton to hold
versioning information fed to it by each class as it is loaded, a single class becomes our central
repository for versioning information. This class, which I call the Versions class, must be called from
each loaded class, passing in the necessary version information:

import java.util.*;

public class Versions

{

private static Map classMap = new HashMap();

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 8 By Ted Neward

public static registerClass(Class c, String rcsInfo)

{

classMap.put(c, rcsInfo);

}

public static Iterator classes()

{

return classMap.keySet().iterator();

}

public static String classInfo(Class c)

{

return (String)classMap.get(c);

}

}

Using it is simple--any class that wishes to be registered must call Versions.registerClass
immediately upon loading. Then, when version information is required, clients call
Versions.classes() to get a list of all classes, and use Versions.classInfo() to get version
information for each class registered:

// VersionOne.java

//

public class VersionOne

{

static

{

Versions.registerClass(VersionOne.class,

"$Logfile: $ $Revsion: $");

}

public VersionOne()

{

System.out.println("VersionOne constructed");

}

}

// VersionTwo.java

//

public class VersionTwo

{

static

{

Versions.registerClass(VersionTwo.class,

"$Logfile: $ $Revsion: $");

}

public VersionTwo()

{

System.out.println("VersionTwo constructed");

}

}

// VersionMain.java

//

public class VersionMain

{

static

{

Versions.registerClass(VersionMain.class,

"$Logfile: $ $Revsion: $");

}

public static void main (String args[])

{

System.out.println("VersionMain");

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 9 By Ted Neward

System.out.println("Built using:");

for (java.util.Iterator i = Versions.classes(); i.hasNext();)

{

Class c = (Class)i.next();

System.out.println(c + " -- " + Versions.classInfo(c));

}

VersionOne v1 = new VersionOne();

VersionTwo v2 = new VersionTwo();

System.out.println("Built using:");

for (java.util.Iterator i = Versions.classes(); i.hasNext();)

{

Class c = (Class)i.next();

System.out.println(c + " -- " + Versions.classInfo(c));

}

}

}

C:\> java -classpath classes VersionMain

VersionMain

Built using:

class VersionMain -- $Logfile: $ $Revsion: $

VersionOne constructed

VersionTwo constructed

Built using:

class VersionTwo -- $Logfile: $ $Revsion: $

class VersionOne -- $Logfile: $ $Revsion: $

class VersionMain -- $Logfile: $ $Revsion: $

Notice something very important about the output, however--in the VersionMain.main() method, the
list of registered classes is browsed twice, with differing results. The first time, because the classes
VersionOne and VersionTwo have not as yet been loaded, the Versions singleton knows nothing about
them and therefore cannot provide any version information about them. Once VersionOne and
VersionTwo have been loaded into the VM11, then listing the Versions classes list reveals them.

Solution Three? Another approach would be to avoid the code-level approach altogether, and simply
embed the information about the versions used directly into a .jar file's manifest file. While attractive at
some levels, the manifest file idea suffers from a few drawbacks:

• It requires more developer overhead. Instead of simply embedding a String into the class, or making
a single call from within a static initializer block, developers must make sure that the versioning
information is carried over into the manifest file at build-time. This is time-consuming.

• Versioning information is carried someplace other than where it will be used. In the two solutions
discussed above, using the source-code control system's keywords works because the information
is stored in the same file that generates the code. If that information needs to be moved someplace
out of the source-controlled file, then the updating of that information becomes an order of
magnitude more difficult.

• Not all code is deployed using a .jar file. More accurately, code deployed via a custom ClassLoader
will be completely outside of the .jar file format, and therefore will have no manifest file in which to
store versioning information.

Because of these drawbacks (most notably the second one), it's not truly feasible to consider the
manifest file an ideal place for storing versioning information (for this scenario).

Consequences

There are a number of consequences to consider with either solution.

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 10 By Ted Neward

The first solution, using Reflection, works well with code to which no source is available, or code which
cannot be modified. In this case, while the RCSINFO string may not be available, other information (such
as the Package information obtained via the ClassLoader's getPackages() call) may be used instead.

However, the Reflection solution also carries with it a serious drawback--because it depends on using
Reflection to make the code work, any code which uses it must have permission to carry out Reflection
operations. Practically speaking, this means that code which uses the Reflection approach must have
the java.lang.reflect.ReflectPermission enabled for its CodeSource. Since not all environments (most
notably EJB and/or Servlet containers) will enable this permission by default, its usefulness in those
environments is extremely limited.

Also, using Reflection to sniff out and retrieve private-declared fields is probably the worst possible use
of the API. It creates an invisible dependency on the internals of ClassLoader, and will not trigger any
sort of compiler error should Sun choose to modify the internal workings of the java.lang.ClassLoader
implementation. Using the source code this way is certain to draw heat from Sun12.

The second solution, by virtue of the fact that it has no dependencies on Reflection whatsoever, avoids
the problems discussed above, with the drawback that it requires source-code modifications in order to
work. This means that if a developer (perhaps that "new guy" on the team who's not quite as
detail-oriented as you'd like) forgets to create the Versions.registerClass call in a static-initializer
block, you'll have no versioning information for that class. Fortunately, this is a fairly easy syndrome to
correct, either by creating a wizard to generate the class boilerplate for you, or else by catching it via
simple code-review upon first checkin of the file. The more serious situation is when you'd like to version
code over which you have no source control--you can't add the static initializer block to register the
class13. In this situation, you have no choice; the first approach is the only one that will work.

Summary

Having the ability to list the source version used to build an executable is a valuable tool in diagnosing
software bugs. If a developer can make sure that the version the customer is using is, in fact, the version
he or she thinks it is, a large number of miscalculations and inaccurate assumptions can be removed
from the debugging process.

Because of Java's lazy-loading approach, embedded strings within source files works only when the
class containing the string is loaded into the VM. Ideally, Sun would provide the ability to obtain a list of
all classes loaded via a particular ClassLoader, but no such API exists. As a result, either we must hack
to find that list, or require classes to register themselves with a third party (in this case, the Versions
class) to be listed.

Notes

[1] Some C/C++ compilers will issue a warning about rcsInfo being unreferenced within the .C file, and
therefore attempt to optimize it away (thus reducing the code size). Users of this idiom are required to use
whatever compiler means necessary-usually a #pragma warning directive of some sort-to prevent this
optimization from taking place.
[2] To be quite specific, on pp. 398 - 402 of C++ Programmer's Companion, he describes a macro-based
system, which generates the unique strings into static char arrays, as described above. I'd repeat his
system here, except that it depends somewhat on C/C++ preprocessor magic to work, and it would take
too long to explain the preprocessor's quirks.
[3] Even Notepad.exe or WordPad (write.exe) will serve in a pinch. Alternatively, use dumpbin.exe (from
the Visual Studio command-line tools) with the "/rawdata" option.
[4] For example, it's possible that the same class of the same package/class name exists within the
Extensions directory, and would be loaded first, instead of the class within the .jar file. See [insideVM] ,
[LiangBracha] , and [sbjp] for more details on the delegating nature of ClassLoaders in Java2.
[5] OK, it's not impossible, but doing so would definitely place you squarely in the world of non-portable

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 11 By Ted Neward

Java. See [bootClasspath] for details on how to do it if you're truly interested.
[6] Available in the src.jar file that ships with the JDK
[7] One way to verify this would be to create a custom ClassLoader that overrides the addClass()
method and spits a line out to the console or a logfile on each classload, then cross-checking that list with
the list of classes loaded by that ClassLoader. Another way would be to write a custom version of
java.lang.ClassLoader to do the same, and use the tricks described in [bootClasspath] to use this
new custom version instead of the Java2 version. Either way, describing how to do this is beyond the
scope of this paper; see [bootClasspath] for guidelines on how to make this work.
[8] It would always be possible to replace the java.lang.ClassLoader definition itself, but doing so
would mean that the code would only work within JVMs with the customized ClassLoader definition. For
purposes of this paper, I'm assuming such a restriction is unacceptable.
[9] For more information on Reflection, see [insideVM] and/or [sbjp] .
[10] We could just use java.lang.ClassLoader.class to get this class, but fooling around with the type
system at this level has so many subtle places where things could go wrong that this seems a slightly
more robust approach.
[11] Again, remember that Java is a lazy-loading system, so classes won't be loaded until absolutely
necessary-see [insideVM] , [LiangBracha] , and [sbjp] .
[12] (With sincere apologies to George Lucas) Remember, "A Jedi uses the Source only for knowledge
and defense. Never for a hack."
[13] At least, not in the traditional sense--there's always the possibility of bytecode-munging at load-time,
but that's beyond the scope of this paper.

Bibliography

• [Davis93] The C++ Programmer's Companion, by Stephen R. Davis. Addison-Wesley
(ISBN:)

• [insideVM] Inside the Java2 Virtual Machine, by Bill Venners. IDG Books 2000 (ISBN:
ZZZ)

• [LiangBracha] "Dynamic Class Loading in the Java Virtual Machine", by Sheng Liang and
Gilad Bracha (presented at 13th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA '98), Vancouver, BC,
Canada, October, 1998) (http://java.sun.com/people/gbracha/classloaders.ps).

• [sbjp] Server-Based Java Programming , by Ted Neward. Manning (ISBN: 1884777716)
• [bootClasspath] "Using the BootClasspath", by Ted Neward

(http://www.javageeks.com/Papers/BootClasspath).
• [gof] Design Patterns, by Erich Gamma, Richard Helm, Richard Johnson, John Vlissides.

Addison-Wesley 1995 (ISBN: No clue)

Copyright

This paper, and accompanying source code, is copyright © 2001 by Ted Neward. All rights reserved. Usage for any other purpose than
personal or non-commercial education is expressly prohibited without written consent. Code is copywrit under the Lesser GNU Public
License (LGPL). For questions or concerns, contact author.

Colophon

This paper was written using a standard text editor, captured in a custom XML format, and rendered to PDF using the Apache Xalan
XSLT engine and the Apache FOP-0.17 XSL:FO engine. For information on the process, contact the author at
tneward@javageeks.com. Revision $Revision: 1.1 $, using whitePaper.xsl revision $Revision: 1.1 $.

Finding Loaded Classes: Know What Code You're Executing

A Javageeks.com White Paper Page 12 By Ted Neward

