

PROFESSIONAL F# 2.0

FOREWORD ... ittt ittt it ittt eeneeneenecnecnacnacnnnns XXi
INTRODUGCTION. ..ot it it it ittt teiieneeneenaeeneeneeneeneenns XXiii
» PART O BEGINNINGS
CHAPTER1 Primer. 3
» PART I BASICS
CHAPTER 2 Lexical Structure. e 31
CHAPTER 3 Primitive TypesS . ..o e e e e 37
CHAPTER 4 Control Flow e i 47
CHAPTERS5 Composite TYpPeS . .ot e e e e e 55
CHAPTER 6 PatternMatching ... e 85
» PARTII OBJECTS
CHAPTER7 Complex Composite TYPeS . ..ottt i 105
CHAPTER 8 ClaSSeS. . . ottt ittt et e e e e e e e 125
CHAPTER 9 Inheritance. e 161
CHAPTER 10 GENEIICS. . ottt ettt e e e e e e e e e e e 183
CHAPTER M PacKagingottt e e e e e e e e 191
CHAPTER 12 Custom Attributes e 197
» PART Il FUNCTIONAL PROGRAMMING
CHAPTER 13 FUNCHIONS. ... o e 209
CHAPTER14 ImmutableData e 225
CHAPTER 15 Data Types. . . oo e e s 247
CHAPTER 16 List Processing e 257
CHAPTER 17 Pipelining and Composition. 269
Continues

Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

» PART IV
CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
CHAPTER 23

APPLICATIONS

o 283
Databases 297
XML, 317
ASPINET MVC. .o 341
Silverlight. ..o 357
SEIVICES . L 377

PROFESSIONAL

F# 2.0

Ted Neward
Aaron C. Erickson
Talbott Crowell
Richard Minerich

WILEY
Wiley Publishing, Inc.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Professional F# 2.0

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-52801-3

ISBN: 978-1-118-00713-6 (ebk)

ISBN: 978-1-118-00827-0 (ebk)

ISBN: 978-1-118-00828-7 (ebk)

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010932419

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

To Charlotte: thank you.
—TeEDp NEWARD

For my grandmother who gave me confidence to write,

and for my kids for giving me a reason to.
—AARON C. ERICKSON

This book is dedicated to my family.
—TaLBOoTT CROWELL

To Lou Franco, beyond being a mentor and friend,
you showed me that what I once thought hard was in

fact easy.

—RICHARD MINERICH

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

CREDITS

ACQUISITIONS EDITOR VICE PRESIDENT AND EXECUTIVE GROUP
Paul Reese PUBLISHER

Richard Swadley
DEVELOPMENT EDITOR

Kelly Talbot VICE PRESIDENT AND
EXECUTIVE PUBLISHER

TECHNICAL EDITORS Barry Pruett

Jason Mauer

Matthew Podwysocki ASSOCIATE PUBLISHER

Al Scherer Jim Minatel

David Morton

PROJECT COORDINATOR, COVER
PRODUCTION EDITOR Lynsey Stanford
Rebecca Anderson

PROOFREADER
COPY EDITOR Sheilah Ledwidge,
San Dee Phillips Word One New York
EDITORIAL DIRECTOR INDEXER
Robyn B. Siesky Johnna VanHoose Dinse
EDITORIAL MANAGER COVER DESIGNER
Mary Beth Wakefield Michael E. Trent
PRODUCTION MANAGER COVER PHOTO

Tim Tate © hfng/istockphoto.com

ABOUT THE AUTHORS

TED NEWARD is the Principal with Neward & Associates, a consulting firm that works with clients
of all sizes, from Fortune 500s to small startups. He is fascinated with programming languages,
virtual machines, and enterprise-class systems, spends a lot of his time in the Java and .NET ecosys-
tems, and has recently begun to explore the world of mobile devices and games. He resides with his
wife, two sons, and eight laptops in the Pacific Northwest.

AARON C. ERICKSON is a Principal Consultant with ThoughtWorks. His life’s work is helping
organizations better leverage technology by contributing to solutions that have substantial positive
economic impact for his clients. He is an enthusiast of agile techniques for delivery of software, and
he has a special interest in helping companies understand how to leverage functional programming
techniques to perform meaningful business analytics, particularly using natural language processing
and Monte Carlo simulation.

TALBOTT CROWELL is a Solution Architect and founder of ThirdM responsible for designing and
building enterprise applications with a focus on Microsoft technologies including SharePoint,
BizTalk Server, and the .NET framework. His company delivers solutions and services to large

and small companies, including Fortune 500s. ThirdM also assists companies with the develop-
ment process by using a blend of Agile and traditional methodologies, Team Foundation Server and
Visual Studio Team System, Scrum, Test Driven Development (TDD), performance testing, and
other proven tools and practices. Involved in the developer community, Talbott co-founded the F#
User Group, http://fsug.org, and serves as a lead for other community events and groups such
as SharePoint Saturday Boston and the Boston Area SharePoint User Group. You can follow him on
twitter, @talbott, or http: //twitter.com/talbott.

RICHARD MINERICH began to notice a problem in the software industry only a few years after gradu-
ating from UMass Amherst. He saw a deep divide between the remarkable advancements being
made in computer science and the aged tools still in use by software engineers and domain experts.
Through writing, speaking, and consulting, Richard hopes to bring these advances to a broader
audience, to facilitate the creation of intelligent software, and to bring disruptive change to stagnant
industries. Richard is currently a Microsoft MVP for the F# programming language and is one of
three leaders of the New England F# User Group.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

ACKNOWLEDGMENTS

FIRST AND FOREMOST, I would like to thank Aaron, Rick, and Talbott for swooping in at the last
second, carving off chunks of the vastly-overwhelming “TODO” list remaining to me, and knock-
ing them off with nary a complaint or challenge. You guys have been a delight to work with. A tip
of the hat must also go to Don Syme, Luke Hoban, Chris Smith, and the others on the F# team,
who patiently answered stupid question after stupid question. Thanks must also go out to the vari-
ous attendees who’ve listened to me prattle on about F#, both those who knew more about the
subject than I, as well as those who knew less — all of you have been extremely helpful in honing
the delivery of the answer to the question, “What is F#, why do I care, and how do I use it?” Matt
Podwysocki in particular gets a hearty kudo for helping me understand some of the thornier func-
tional concepts, and Kevin Hazzard gets one just for being himself.

Lastly, no book gets written without a support structure, and in this case, that structure consists
principally of my wife, Charlotte, who patiently endured night after night of “I promise I’ll be home
by midnight” and wound up waiting for me ‘til 3 or 4 AM, just to hear how my day (er... night)
went. Hon, you deserved much better than me, but I’ll never tell, on the off chance that you haven’t
figured it out yet.

—TED NEWARD

I WOULD LIKE TO thank, my wife, my kids, and my professional colleagues for their support through
this process. Of course, a hearty thanks goes to the folks at Wrox who have been very patient along
the way, especially during those times where billable consulting time conflicted with book writing
time. Of course, without all the great people in the F# community, this book would not have hap-
pened. Particular thanks goes to Alex Pedenko, who helped me vet the Relational Record Mapper
concept, nicely extending the work I started in the data chapter.

—AARON C. ERICKSON

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

ACKNOWLEDGMENTS

I WOULD LIKE TO thank my family, especially my wife Pradeepa and two sons, Tristan and William,
for their support and patience while I worked on this book. I would also like to thank my parents
and siblings who have also been major supporting factors in my life. I would like to extend my grati-
tude toward my co-authors, Ted Neward, Aaron Erickson, and Rick Minerich for their dedication
to getting this book published, Michael de la Maza for spearheading the F# User Group, Don Syme
and Microsoft Research for their brilliant work creating F#, plus Luke Hoban and the Microsoft
product team for bringing F# into Visual Studio as part of the product.

—TaLBoTT CROWELL

NO AMOUNT OF THANKS to my co-authors would be enough. Ted, for bringing vision and leadership
to this project. Aaron, for his frequent advice on dealing with the many small dramas of the author-
ing and consulting world. Talbott, for recommending me for this project and for being my New
England F# brother-in-arms. I'd also like to thank Michael de la Maza who came up with the idea
to start a New England F# User Group, everyone at Atalasoft for supporting me in this and my par-
ents for cheering me up when the pressures seemed worst. Finally, I'd like to thank the F# commu-
nity; each of you proves the superiority of statically-typed functional programming on a daily basis.

—RICHARD MINERICH

CONTENTS

FOREWORD

INTRODUCTION

XXiii

PART O: BEGINNINGS

CHAPTER 1: PRIMER 3
Setup 5
It’s that Time of Year Again... 7
Strategy 10
The Delegate Strategy 12
Lambda Calculus (Briefly) 17
Type Inference 22
Immutability 26
Expressions, not Statements 27
Summary 28

PART I: BASICS

CHAPTER 2: LEXICAL STRUCTURE 31
Comments 31
Identifiers 32
Preprocessor Directives 33
Significant Whitespace 34
Summary 35

CHAPTER 3: PRIMITIVE TYPES 37
Boolean 37
Numeric Types 38
Bitwise Operations 40
Floating-Point Types 40
Arithmetic Conversions 4
String and Character Types 42
Unit 43
Units of Measure Types 43

Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

CONTENTS

Literal Values 44
Summary 45
CHAPTER 4: CONTROL FLOW 47
Basic Decisions: if 47
Looping: while/do 49
Looping: for 50
Exceptions 50
try...with 51
try...finally 52
Raising and Throwing Exceptions 52
Defining New Exception Types 53
Summary 53
CHAPTER 5: COMPOSITE TYPES 55
Option Types 55
Option Functions 57
Tuples 58
Arrays 60
Array Construction 60
Array Access 62
Array Functions 62
Lists 65
List Construction 66
List Access 68
List Methods 70
Using Lists and Arrays 72
Sequences 74
Maps 79
Map Construction 79
Map Access 80
Map Functions 81
Sets 82
Summary 83
CHAPTER 6: PATTERN MATCHING 85
Basics 85
Pattern Types 88
Constant Patterns 88
Variable-Binding (“Named”) Patterns 89

Xii

CONTENTS

AND, OR Patterns
Literal Patterns
Tuple Patterns
as Patterns
List Patterns
Array Patterns
Discriminated Union Patterns
Record Patterns
Pattern Guards
Active Patterns
Single Case
Partial Case
Multi-Case
Summary

90
90
91
92
92
93
93
93
94
95
96
97
99
102

PART Il: OBJECTS

CHAPTER 7: COMPLEX COMPOSITE TYPES 105
Type Abbreviations 105
Enum Types 106
Discriminated Union Types 109
Structs 14

Value Type Implicit Members 17
Structs and Pattern-Matching 18
Record Types 119
Record Type Implicit Members 123
Summary 123

CHAPTER 8: CLASSES 125

Basics 125
Fields 126
Constructors 127
Creating 131

Members 132
Properties 132
Methods 140

Static Members 146
Operator Overloading 147

Delegates and Events 149
Subscribing 150
Delegates 150

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

xiii

CONTENTS

DelegateEvents 152
Beyond DelegateEvents: Events 154
Access Modifiers 155
Type Extensions 157
Summary 159
CHAPTER 9: INHERITANCE 161
Basics 161
Fields and Constructors 163
Overriding 166
Abstract Members 168
Default 169
Casting 17
Upcasting 172
Downcasting 172
Flexible Types 173
Boxing and Unboxing 174
Interfaces 177
Implementation 177
Definition 180
Object Expressions 181
Summary 181
CHAPTER 10: GENERICS 183
Basics 183
Type Parameters 185
Type Constraints 186
Type Constraint 187
Equality Constraint 187
Comparison Constraint 188
Null Constraint 188
Constructor Constraint 188
Value Type and Reference Type Constraints 188
Other Constraints 189
Statically Resolved Type Parameters 189
Explicit Member Constraint 189
Summary 190
CHAPTER 11: PACKAGING 191
Namespaces 191
Referencing a Namespace 191

Xiv

CONTENTS

Defining a Namespace 192
Modules 193
Referencing a Module 193
Defining a Module 193
Summary 195
CHAPTER 12: CUSTOM ATTRIBUTES 197
Using Custom Attributes 197
EntryPoint 198
Obsolete 199
Conditional 200
ParamArray 200
Struct, Class, AbstractClass, Interface, Literal, and Measure 201
Assembly Attributes 201
DefaultMember 202
Serializable, NonSerialized 202
AutoOpen 202
Other Attributes 202
Creation and Consumption 203
Creation 203
Consumption 205
Summary 206
CHAPTER 13: FUNCTIONS 209
Traditional Function Calls 209
Mathematical Functions 210
Coming from C# 21
Function Arguments and Return Values 21
Automatic Generalization and Restriction 21
The inline Keyword 212
Type Annotations 213
Generics and Type Constraints 214
Statically Resolved Type Parameters 215
Partial Application 215
Currying 216
Restrictions on Functions and Methods 217
Functions as First Class 218
Recursive Functions 218
Higher Order Functions 219
Storing Functions 221

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

XV

CONTENTS

Creating Functions at Runtime 221
Summary 223
CHAPTER 14: IMMUTABLE DATA 225
The Problem with State 225
State Safety 226
Programwide State Safety 226
Local Data State Safety 229
Data Mutation 232
Avoiding Mutation 233
Bubble and Assign 235
Reference Cells 236
Passing by Reference 238
Message Passing 238
Performance Considerations 239
Lists 239
Arrays 242
Sequences 242
Tuples 243
Records 243
structs 243
Summary 245
CHAPTER 15: DATA TYPES 247
Ambiguously Typed Data 247
Failing Fast 248
Specificity 248
Option as an Example 249
Encapsulating State in Types 249
Avoiding Exceptions 251
Data and State Flow 252
Recursively Defined Data Types 253
Summary 255
CHAPTER 16: LIST PROCESSING 257
Collection Abstractions 257
Module Functions 258
Collection Subsets 258
filter 259
partition 259

Xvi

CONTENTS

Element Transformations 260
map 260
choose 262
collect 262

Accumulators 263
reduce 264
fold 265
scan 266

Summary 267

CHAPTER 17: PIPELINING AND COMPOSITION 269

Basic Composition and Pipelining 269
Pipelining 270
Composition 272

Applying Pipelining and Composition 275
From Loops to Pipelining 276
From Pipelining to Composition 277
Advanced Composition 278

Summary 280

CHAPTER 18: C# 283

Overview 283

Calling C# Libraries from F# 284
Simple Method Calling Scenarios 284
C# Object Construction 285
F#, C#, and null 286
F# and C# Methods that Expect Delegates 287
F# and C# Events 288
F# to C# Summary 289

Calling F# Libraries from C# 289
Basics of Calling F# 290
F# Tuples in C# Programs 290
Dealing with F# Records from C# 291
Passing Functions to F# Functions 292
Dealing with F# Discriminated Unions from C# 292
Working with F# Option Types from C# 293

Rules of Thumb for Writing F# APls 294

Summary 295

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

xvii

CONTENTS

xviii

CHAPTER 19: DATABASES 297
Overview 297
Retrieving Data Using ADO.NET 298

Creating a Database Connection 298
Reading Data 299
Filtering Data 300
Insert, Update, and Delete 301
F# and Object Relational Mapping 302
Introducing F# Active Record (FAR) 303
Reading Data 303
Querying Data 304
Adding Data 304
Updating Data 305
Deleting Data 305
What Isn’t Supported 306
Coming Soon 306
How FAR Works 306
Dependencies 306
Utility Routines 307
Table Creation 308
Query Processing 309
Implementation of Other FOR Operations 314
Summary 315

CHAPTER 20: XML 317
Overview 317
F# and LINQ-to-XML 318

Reading 318
Querying 320
Processing 322
Writing 325
Writing XML to Memory or Other Stream-Based Resources 325
F# and XML DOM 325
Reading 326
Querying 327
Processing 328
Writing 329
F#, XML, and Active Patterns 329

Multi-case Active Patterns

330

CONTENTS

Partial-Case Active Patterns 336
Summary 339
CHAPTER 21: ASP.NET MVC 341
Overview 341
FORECAST’'R — The World’s Simplest Weather
Forecast Site 342
Modeling the Domain 343
Creating a Repository 344
Creating the Controller 349
Creating Some View Helpers 351
Creating the View 352
Summary 355
CHAPTER 22: SILVERLIGHT 357
Overview 357
Software Runtime and Developer Requirements 359
Visual Studio Project Templates 360
The Silverlight Application 361
The F# Silverlight Library 363
The Silverlight Toolkit 365
Line Charts and Area Charts 365
Designer Tools 366
Data Binding 368
Design Time Data Binding 368
Programmatic Data Binding 371
Calculating Moving Average 372
Putting It All Together 373
Summary 376
CHAPTER 23: SERVICES 377
Overview 377
An F#-Based Weather Service 378
The Service Contract 378
Leveraging the Domain Model 380
Writing the Service Controller 381
Rendering Weather 381
Helping the Service Controller 381
Service Controller Implementation 382

Xix
Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

CONTENTS

Service Implementation

Implementing the Service Host
Consuming Services

Generating a Service Stub

Writing the Service Consumer
Summary

INDEX

XX

383
383
385
385
388
390

391

FOREWORD

There’s Left, Right, and there’s Center. There’s peanut butter, chocolate, and then there’s peanut
butter cups. C#, Visual Basic...and now there’s F#. There have always been effectively only two
choices for programmers that target .NET, and for many that’s been no choice at all. Take a look
at F#. It’s a functional language, to be clear, but it’s also object-oriented and a bridge between two
worlds. It’s all the goodness of a peanut butter cup, and more.

To many, F# feels new and dramatic. Its values are rooted not just in some of the first programming
languages, but the lambda calculus itself. F# may feel new to you and me, but it’s based on 80 years
of deep mathematical proof and respected thought.

When the get-er-done programmer hears names like Scheme, OCaml, Haskell, Erlang, and F#,

these languages conjure up visions of crazy-eyed computer scientists and bearded hermits. You can’t
expect to really sell software written in these languages any more than John Grisham can sell a legal
mystery written in Latin, right? That’s madness.

Actually not. F# needs to be a new tool in your toolbox. Imagine not thinking about variables
changing their value. Imagine no global state and no side effects. Imagine not worrying about
deadlocks and race conditions because you aren’t using any locks. Consider not just testing your
application but proving that it works and being able to count on it.

F# reminds us that writing stateful code in a procedural language for a machine that has 12 cores is,
well, freaking hard to get right. F# reminds the .NET programmer that there is life beyond the sim-
ply procedural. F# gives you this, and the familiarity of the .NET runtime and Base Class Library
that you already know how to use. You can write F# not just with .NET on Windows, but also on
Xbox 360, Silverlight, and Mono on Linux.

There’s another way of thinking out there and it’s functional. Study this book’s take on F#. It’s clear,
code-focused, realistic, and pragmatic. This is a real language that you can solve real problems with.
I hope you enjoy reading this book as much as I did.

—ScoTT HANSELMAN
Principal Program Manager Lead
—Server and Tools Online - Microsoft

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

INTRODUCTION

This is a book on the F# programming language.

On the surface of things, that is a nonsensical and/or intuitively obvious statement, given the title
of this book. However, despite the apparent redundancy in saying it aloud, the sentence above
elegantly describes what this book is about: We are not attempting to teach developers how to
accomplish tasks from other languages in this one, nor are we attempting to evangelize the lan-
guage or its feature set or its use “over” other languages. We assume that you are reading this
book because you have an interest in learning the F# language: its syntax, its semantics, its pros
and cons, and its use in concert with other parts of the .NET ecosystem.

WHO THIS BOOK IS FOR

In order to keep to the core focus of the book, we assume that you, the reader, are a journeyman
.NET developer, familiar with at least one of the programming languages in the .NET ecosystem: C#
or Visual Basic will be the most common language of choice for those in the .NET community — but
if you've learned C++/CLI or even one of the lesser-known .NET languages (IronPython or IronRuby,
perhaps, or even one of the dozens or so of “alternative” languages for the CLR), you’ll still be able to
follow along without too much difficulty.

In particular, we assume that you’re already comfortable with concepts like assemblies, managed
code, and executing on top of a virtual machine, so none of that “. NET 101” topical material
appears here, as it would be redundant to what you’ve already read in a beginning or intermedi-
ate C# or Visual Basic book. You’ve probably used Reflection at some point in your career, and/
or XML, WinForms, Windows Presentation Foundation (or its web-based successor, Silverlight),
Windows Communication Foundation, with maybe a little database access thrown in for good
measure.

In short, we assume that you’ve been developing in the .NET environment for the past couple of
years. If that’s not you, you may want to start with one of the introductory .NET titles, such as
Beginning C# 3.0 or Beginning Visual Basic 2010. For that reason, there are no “hand-holding”
steps found in a variety of other books when it comes to creating Visual Studio Solution files or
creating new Projects; not only would those steps be useless to the journeyman .NET developer
(not to mention somewhat insulting), but they are also useless to the F# developer who wants to use
MonoDevelop and the Mono implementation of the Common Language Runtime for writing and
executing F# code. Considering that F# has held full compatibility with Mono as a goal since its
inception, ignoring that crowd felt rude.

If you are of the handful of functional programmers who’ve been working in Haskell, Ocaml, ML,
or some Lisp-based derivative, you’re probably not going to like this book. We spend no time dis-
cussing monads, monoids, or catamorphisms here, nor do we consider that a missing part of the

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

INTRODUCTION

book that “we just didn’t have time to cover;” the book you want will be written entirely differently
than this one, in a different style than this one, and probably by entirely different authors.

This book assumes you are comfortable with object-orientation and want to start down the path of
learning not only how to program with functional concepts, but that you want to work with both
functions and objects, in some kind of pleasant harmony, on top of the CLR.

If you’re still not sure if you’re the right reader for this book, take this little test: read Chapter 1,
Primer, and see if that makes sense to you. If it seems way too simple, you’re probably more func-
tionally-minded than we assumed the average reader to be; you’ll find the book useful as a reference,
perhaps, or as a skimmable guide to the syntax, but you won’t find mind-popping concepts in here.
If it seems way too difficult, then don’t despair — that chapter is intended as a microcosm of where
we want you to end up.

If that chapter seems “just right,” though, head on over to the register.

WHAT THIS BOOK COVERS

This book takes a four-part approach to the F# language (officially, the F# 2.0 version of the lan-
guage): basics, objects, functions, and “integration” (meaning how F# interacts with various .NET
technologies like Silverlight or relational databases). We go over the 90% of the F# programming
language that we think you’re going to need.

Note that we’re not a complete reference on the language. We ignore the 10% of the language specifi-
cation that we think most .NET developers will never run into, on the grounds that if you do run into
one of those edge-case constructs, you’ll have enough familiarity with the F# syntax to figure it out, or
you’ll look it up in the F# 2.0 Language Reference (or ask somebody in forums or on a mailing list) for
the exact details. (Our guess is that it’ll be at least a year or so as a practicing F# developer before you
run into one of those constructs.)

HOW THIS BOOK IS STRUCTURED

XXiv

The book is arranged in, we think, the order a practicing .NET (which means, “object-trained”)
developer will find most useful.

Part O is the Primer, a gentle up-sloping introduction to the concepts that the F# language incorpo-
rates as first-class citizens as well as a hint of some of the ways in which functional programming
can be useful within the .NET environment.

Part I covers Basics. Here, you’ll find definitions of the primitive types, flow control, syntax rules,
and other such things that have to be defined before anything else can be discussed.

Part IT covers Objects. F# permits the creation of new classes, interfaces and other object-oriented
types, as well as the traditional set of object-oriented features such as implementation inheritance,
and they’re all covered here. In keeping with the tone of the book, we don’t spend a lot of time

INTRODUCTION

teaching you what “IS-A” means; as a practicing .NET developer, you already know that. So this
chapter focuses primarily on the syntax, and how F# “does objects” both similarly to, and differ-
ently from, its sibling languages C# and Visual Basic.

Part III takes on an entirely different tone, that of Functions, and will be the new material and
concepts for most readers. Instead of using Visual Studio, you use the REPL (Read-Evaluate-Print-
Loop) for writing snippets of code and seeing them execute immediately. Instead of building up
objects, you create functions. And so on. Readers could stop after the end of Part IT and have F# as
“a better C#,” but doing so would be missing out on some of the very things that make F# vastly
more interesting than C#.

Part IV, then, shows how to use F# with a variety of different technologies (XML, Silverlight, services,
and so on), and tries to show one way — not the way — to use F# beyond straight console-mode appli-
cations. As tempting as it might be to jump straight here and cut-and-paste the code into your own
applications, resist the urge until you’ve read through the first three parts. It’s vastly more satisfying to
be able to predict what the code will look like as you read along, than to just see the code execute and
have no real idea why.

WHAT YOU NEED TO USE THIS BOOK

We assume that you have Visual Studio 2010 installed on your system. As of this writing, unfor-
tunately, no “Visual 2010 F# Express” edition download exists from Microsoft, so you’ll need to
have Visual Studio 2010 Professional installed, with (obviously) the Visual F# feature set installed
with it.

If you have a Visual Studio 2008 installation, you can still play in the F# playground, but it’s a bit
harder: You must find and download the Visual F# install bits for Visual Studio 2008 (it’s a Visual
Studio package), and install them. Technically, this is the “F# 2.0 for Windows + Visual Studio
2008 (April 2010 release)” version.

If you don’t have any version of Visual Studio and are unwilling to acquire one, another option is
available to you: a self-constructed version of “Visual F# Express.” By installing the Visual Studio
2008 Shell and the aforementioned “F# 2.0 for Windows...” bits, you will have a version of Visual
Studio 2008 that contains only the F# language compiler and nothing else — no ASP.NET, no
Silverlight, nothing. (As of this writing, the F# team was exploring whether the Visual Studio 2010
Shell would work as a host for the F# 2.0 bits, and while it’s likely that such a combination will
work, none of the authors here can verify that for a fact.)

If you are looking to use F# on Mono, then you want to download the “F# 2.0 for Mono/Mac/
Linux (compiler binaries)” and install according to the instructions there.

As of this writing, the “F# Downloads” page on Microsoft Research (research.microsoft.com)
has links to all of the different flavors discussed here.

Our assumption is that the vast majority of our readership will be using Visual Studio 2010 or
Visual Studio 2008, so if you’re one of the readers outside of that population set, we apologize

XXV
Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

INTRODUCTION

ahead of time for whatever conflicts you will find with command-prompt output, screen shots, or
references to IDE instructions.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be-forgotten
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

As for styles in the text:
O We show keyboard strokes like this: Ctrl+A.
© We show file names, URLs, and code within the text like so: persistence.properties.

O We present code like this:

We use a monofont type for code examples.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the website is highlighted by the

following icon:

Available for
download on
Wrox.com

XXVi

INTRODUCTION

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a code
note such as this:

Code snippet filename

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-0-470-52801-3.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

XXvii
Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

INTRODUCTION

At p2p.wrox.com, you will find a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1.
2.
3.

4.

Go to p2p.wrox.com and click the Register link.
Read the terms of use and click Agree.

Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post
YOur own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Xxviii

PART O
Beginnings

» CHAPTER 1: Primer

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Primer

WHAT'’S IN THIS CHAPTER?

Understanding strategies
Reviewing Lambda calculus
Infering types
Understanding mutability

@ © 6 o6 ©

Creating your own bindings

Object-oriented programming has been with us for close to two decades, if not longer; its
expressions of those concepts via the languages C# and Visual Basic, and the platform on
which they run, the CLR, have been more recent, only since 2002. The community and eco-
system around the object-oriented paradigm is vast, and the various traps and pitfalls around
an object-oriented way of thinking has seen copious discussion and experience, and where
disagreements occur, reasoned and heated debate. From its inception more than 40 years
ago, through its exploration in languages invented yesterday, an object-oriented approach to
languages has received the benefit of the attention of some of the smartest language and tool
designers in the industry, and a highly permutational approach to ancillary features around
the language, such as garbage collection, strong-versus-weak typing, compilation-versus-inter-
pretation, and various hybrids thereof, full-fidelity metadata, parameterized types, and more;
no stone, it seems, remains unturned.

One of the principal goals of an object-oriented language is the establishment of user-defined
types (UDTs) that not only serve to capture the abstractions around the users” domain, but
also the capability to reuse those types in a variety of different scenarios within the same
domain without modification. Sometimes this domain is a business-flavored one — at the start
of the 21* century these kinds of types were called business objects and later domain types.
Sometimes the domain is an infrastructural one, such as presentation or communication,

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

4 [XCHAPTER1 PRIMER

and these types are frequently collected together in a large bundle known as a framework or class
library. And despite the relatively slow start that C++ class libraries saw during C++’s heyday, the

combination of fast, cheap network access and volunteers willing to share their efforts has led to a
proliferation of these infrastructural bundles that dwarfs anything the industry has seen before.

Unfortunately, despite the huge success of C++, Java, and .NET, the original premise of the object-
oriented, that developers could take objects “off the shelf” and reuse them without modification, has
yet to occur for anything but the infrastructural domain. Even in that domain, debate and duplica-
tion rages over subtle points of design that can only be changed by changing the underlying source
code making up those infrastructural types.

More important, as the 20 century came to a close and the 21 loomed on the horizon, developers
began to find “edges,” limitations to the object-oriented paradigm that saw no easy answer. These
edges pushed the object-oriented community to amend its approach slightly, placing those objects
into containers and relying on the container to provide a set of services that could not easily be cap-
tured by object-oriented methodology. These component containers, exemplified by the Enterprise
Java Beans standard (and its later lighter-weight successor, Spring) and COM+/EnterpriseServices
found some traction but were never wholly adored by the developers who used them.

In time, those containers were amended to take a more coarse-grained approach, seeking a certain
degree of simplification to enable for a more interoperable capacity, and these new domain bundles
received a new name: services. Although Service-Oriented Architecture (SOA) sounded an entirely
new style of programming, developers seeking to take their traditional object-oriented concepts into
the service-oriented realm found themselves struggling with even the simplest of designs.

Despite the guidance of well-honed discussions around object-oriented design (called design pat-
terns at first, then later just patterns), the more developers sought to model their software after the
reality of the businesses around them, the more they struggled to achieve the reusability promised
them. Coupled with this came the disquieting realization that object languages had not only failed
to produce that set of “Tinkertoys” that developers or users could just reuse off the shelf, but also
that some domains defied some of the modeling characteristics of object languages entirely — some
domains were just complicated and awkward to model in objects.

Then, subtly, a new problem emerged: the underlying hardware ceased its steady march of
improved performance and instead began to respond to the beat of a different drum, that of multi-
core. Suddenly, where programmers used to face problems in a single- or slightly-multi-threaded
environment, now the hardware demanded that additional performance would come only from
greater and greater parallelization of code. Where the object-oriented developers of the 20™ century
could assume that only a single logical thread of execution would operate against their objects,

the developers of the 21 century has to assume that many logical threads of execution will all be
hammering on their objects simultaneously. The implication, that developers must now consider all
possible interactions of multiple threads on every operation available on the types they define, con-
tinues to hang like a proverbial Sword of Damocles over the heads of object-oriented programmers
even as the first decade of the new century came to a close.

This chapter attempts to demonstrate some of the technical challenges C# and Visual Basic devel-
opers (and, to a logical extent, their cousins and predecessors in Java and C++) have faced when
using the object-oriented paradigm exclusively. In the beginning, challenges will be addressed with

Setup

programming techniques available to the developer using off-the-shelf tools and technology, but as

the problems surmount, so will the desire to change those tools into something more, something that
demonstrates the need for a new approach to programming beyond the traditional object-oriented one,
and a new language to explore and expose those concepts more succinctly and directly.

SETUP

Imagine a system, a simple one (to start) for tracking students and instructors and the classes they
teach. In keeping with traditional object-oriented thought, several domain types are defined, here
in C# 2.0, though the actual language — C#, Visual Basic, C++/CLI (any .NET language would
work) — in which they are defined makes little difference:

class Person

{
private string m_first;
private string m_last;
private int m_age;

public Person(string fn, string 1ln, int a)
{
FirstName = fn;
LastName = 1n;
Age = a;
}
public string FirstName
{
get { return m_first; }
set { m_first = value; }
}
public string LastName
{
get { return m_last; }
set { m_last = value; }
}
public int Age
{
get { return m_age; }
set { m_age = value; }

class Student : Person
{

private string m_major;

public Student (string fn, string ln, int a, string maj)
: base(fn, 1n, a)

{
Major = maj;

}

public string Major

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

6 [XCHAPTER1 PRIMER

get { return m_major; }
set { m_major = value; }

class Instructor : Person
{

private string m_dept;

public Instructor(string fn, string ln, int a, string dept)
base(fn, 1n, a)

{
Department = dept;
}
public string Department
{
get { return m_dept; }
set { m_dept = value; }
}

class Class

{
private string m_name;
private List<Student> m_students = new List<Student>();
private Instructor m_instructor;

public Class(string n)

{
Name = n;
}
public string Name
{
get { return m_name; }
set { m_name = value; }
}
public Instructor Instructor
{
get { return m_instructor; }
set { m_instructor = value; }
}
public List<Student> Students
{
get { return m_students; }
}

As with most systems of its type, the system begins simply: there are two kinds of “Person”s in the
system, Students and Instructors, and Classes are taught to Students by Instructors. So,
building up from basic parts, lists of Instructors and students might look like this:

class Program

{

static List<Student> Students = new List<Student> () ;
static List<Instructor> Instructors = new List<Instructor>();

It’s That Time of Year Again...

static Program()

{

Instructors.Add(new Instructor("Al", "Scherer", 38,
"Computer Science"));

Instructors.Add (new Instructor ("Albert", "Einstein", 50,
"Physics"));

Instructors.Add(new Instructor ("Sigmund", "Freud", 50,
"Psychology")) ;

Instructors.Add(new Instructor ("Aaron", "Erickson", 35,

"Underwater Basketweaving"));

Students.Add (new Student ("Matthew", "Neward", 10,
"Grade school"));

Students.Add (new Student ("Michael", "Neward", 16,
"Video game design"));

Students.Add (new Student ("Charlotte", "Neward", 38,
"Psychology")) ;

Students.Add (new Student ("Ted", "Neward", 39,
"Computer Science"));

Obviously, in a real-world program, these lists of objects will be stored in some form of long-term
storage, such as a relational database, but this suffices for now.

IT’S THAT TIME OF YEAR AGAIN...

At the beginning of the school year, new classes are created and entered into the system — again,
this is modeled in the example as a simple list:

List<Class> classesFor2010 = new List<Class>();

classesFor2010
classesFor2010
classesFor2010

classesFor2010

classesFor2010.
.Add (new Class ("Geek Psych"));

classesFor2010

.Add (new Class
.Add (new Class
.Add (new Class (

"Scala for .NET Developers"));

(
("F# for .NET Developers"));

"How to play pranks on teachers"));

.Add (new Class (

"Baskets of the Lower Amazon"));
Add (new Class("Child Psych"));

And when the classes have been set up (Instructors will be assigned later, after the Tnstructors
have determined who is lowest on the totem pole and has to actually teach this year), the students
need to log in to the system and register for classes:

Console.Write

(o
string first =
("

Console.Write

'"Please enter your first name:");

Console.ReadLine() ;

'"\nPlease enter your last name:");

string last = Console.ReadLine();

After the student has entered this information, the two strings must somehow be reconciled into a
Student object, a process that usually involves searching the list:

foreach (Student s in Students)

{

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

8 [XCHAPTER1 PRIMER

if (s.FirstName == first && s.LastName == last)
{
// ... Do something

}

This feels sloppy somehow — after some deeper thought, several things emerge as “wrong.”

First, an obvious bottleneck emerges if this list becomes large; for a school of a half-dozen
Instructors and a few dozen Students, this simple one-at-a-time comparison works well enough,
but if the system grows to incorporate campuses all across the world and millions of students, this
is going to break down quickly.

Second, when it comes time to select an Instructor for a class, similar kinds of search needs
to happen, and simply repeating the foreach loops over and over again is a violation of the DRY
(Don’t Repeat Yourself) principle — there’s no reusability. This problem will only magnify itself
if the searches are somehow optimized, because the optimizations will need to happen for each
search.

It may seem tempting to brush these concerns off as irrelevant, because if the
data is stored in a relational database, the performance and scalability concerns
become issues of SOL and database tuning. Stay with the point for now, and
trust in that this is merely the tip of the iceberg.

The obvious object-oriented solution to the problem, then, is to create custom data structures for
ﬁoﬂngthestudentsandInstructor&

class InstructorDatabase

{
private List<Instructor> data = new List<Instructor>();
public InstructorDatabase() { }

public void Add(Instructor i) { data.Add(i); }
public Instructor Find(string first, string last)
{

foreach (Instructor i in data)
{
if (i.FirstName == first && i.LastName == last)
return i;

}

return null;

class StudentDatabase

{
private List<Student> data = new List<Student>();
public StudentDatabase() { }

public void Add(Student i) { data.Add(i); }

It’s That Time of Year Again...

public Student Find(string first, string last)
{
foreach (Student i in data)
{
if (i.FirstName == first && i.LastName == last)
return 1i;
}

return null;

At first glance, this seems like a good idea, but a longer look reveals that these two classes differ in
exactly one thing — the kind of data they “wrap.” In the first case, it’s a list of Instructors, and in
the second, a list of Students.

The sharp C# 2.0 programmer immediately shouts out, “Generics!” and after enduring the quizzical
looks of the people sharing the room, looks to create a single type out of them, like this:

class Database<T>

{

private List<T> data = new List<T>();
public Database() { }

public void AdAA(T i) { data.Add(i); }
public T Find(string first, string last)
{

foreach (T i in data)

{

if (i.FirstName == first && i.LastName == last)
return 1i;
}

return null;

but unfortunately, the C# compiler will balk at the code in Find(), because the generic type T can’t
promise to have properties by the name of FirstName and LastName. This can be solved by add-
ing a type constraint in the generic declaration to ensure that the type passed in to the Database is
always something that inherits from Person, and thus has the FirstName and LastName properties,

like this:

class Database<T> where T: Person

{

private List<T> data = new List<T>();
public Database() { }

public void AdAd(T i) { data.Add(i); }
public T Find(string first, string last)
{
foreach (T i in data)
{
if (i.FirstName == first && i.LastName == last)
return 1i;

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

10

[XEHAPTER1 PRIMER

return null;

which works, for now. Unfortunately, although this solves the immediate problem, what happens
when the Database needs to search for a Student by major, or an Instructor by field? Because
those are properties not specified on the Person type, once again the Database class will fail.

What’s actually needed here is the ability to search via some completely arbitrary criteria, specified
at the time the search is to happen — if this search were being done in SQL, the programmer could
pass in a WHERE clause, a search predicate, by which the database could evaluate all the potential
matches and return only those that met the criteria.

This sounds like a pretty good idea and one to which object-orientation has an answer: the Strategy
pattern.

STRATEGY

In design patterns parlance, a Strategy is a setup where an object that implements an algorithm can
be passed in for execution without the client knowing the actual details of the algorithm. More
important, an appropriate Strategy can be selected at runtime, rather than being decided (some
might say hard-coded) at compile-time. This is almost spot-on to what’s needed here, except in this
case the “algorithm” being varied is the criteria by which each potential match is evaluated.

In the classic Strategy implementation, an interface defines the parameters and result type to the
algorithm:

interface ISearchCriteria<T>

{
bool Match(T candidate);

This, then, enables the Database to be written to be entirely ignorant of the criteria by which
to search:

class Database<T> where T : class

{

private List<T> data = new List<T>();

public T Find(ISearchCriteria<T> algorithm)
{
foreach (T i in data)
{
if (algorithm.Match(i))
return i;
}

return null;

Strategy [>11

The type constraint is still necessary, because the Database needs to return “null” in the event that

the search fails. But now at least the Database is once again generic. Unfortunately, using it leaves
something to be desired:

class Program

{

static Database<Student> Students = new Database<Student>();
static Database<Instructor> Instructors =

new Database<Instructor>();

class SearchStudentsByName : ISearchCriteria<Student>

{

private string first;
private string last;
public SearchStudentsByName (string f, string 1)
{
first = f;
last = 1;
}
public bool Match(Student candidate)
{
return candidate.FirstName == first &&
candidate.LastName == last;

static void Main(string[] args)

{

//
Student s = null;
while (s == null)

{
Console.Write("Please enter your first name:");
string first = Console.ReadLine();
Console.Write("\nPlease enter your last name:");
string last = Console.ReadLine();
s = Students.Find(
new SearchStudentsByName (first, last));
if (s == null)
Console.WriteLine("Sorry! Couldn't find you");
}
// Do something with s

Yikes. The code definitely got a little bit easier to use at the point of doing the search, but now a new
class has to be written every time a different kind of search needs to happen, and that class will have
to be accessible every place a search could be written.

Fortunately, the savvy C# 2.0 developer knows about delegates and their extremely powerful cous-
ins, anonymous methods. (Equally as fortunate, the savvy C# 2.0 developer knows not to shout
things out in a room full of people while reading a book.)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

12 [XCHAPTER1 PRIMER

THE DELEGATE STRATEGY

The whole interface-based Strategy approach can be eliminated in favor of a well-defined delegate
type and an instance of an anonymous method:

delegate bool SearchProc<T> (T candidate) ;
class Database<T> where T : class
{
private List<T> data = new List<T>();
public Database() { }

public void AAd(T i) { data.Add(i); }
public T Find(SearchProc<T> algorithm)
{

foreach (T 1 in data)

{

if (algorithm(i))
return 1i;
}

return null;

The real savings comes at the point where the student login code does the lookup; because the
search now takes a delegate instance, the criteria by which the student is looked up can be as rich
or as simple as the case demands:

Student s = null;

while (s == null)

{
Console.Write("Please enter your first name:");
string first = Console.ReadLine();
Console.Write("\nPlease enter your last name:");
string last = Console.ReadLine();
s = Students.Find(delegate (Student c) {

return
c.FirstName == first &&
c.LastName == last

1)
if (s == null)
Console.WriteLine("Sorry! Couldn't find you");
}
// Do something with s

Now, all kinds of performance optimization can be done in the Database<T> class, because the cli-
ent code remains ignorant of how the search is done. Instead, it simply specifies what to match (or if
you will, how the match is done, instead of how the search is done).

However, the Database isn’t done yet: if the Database is later going to find all Instructors that

teach a particular subject, it needs the capability to return more than one object if the criteria is
matched:

class Database<T> where T : class

{

The Delegate Strategy [X13

private List<T> data = new List<T>();
/7

public T[] FindAll (SearchProc<T> algorithm)
{

List<T> results = new List<T>();

foreach (T i in data)

{

if (algorithm(i))
results.Add (1) ;
}
return results.ToArray () ;

C# 2.0 saw much of this coming and predefined those delegate types already as part of the FCL: the
Predicate<T> and Func<T> delegate types, the first used to yield a bool result (like the searchProc
previously defined) and the other used to simply “act” upon the value passed in (such as printing it
to the console or something similar). In the spirit of “Code not written or removed means code not
written with bugs, or maintained so that bugs are introduced later,” this means that the code can be
refactored to remove the redundant delegate type declaration and use those already defined:

class Database<T> where T : class

{
private List<T> data = new List<T>();
public Database() { }

public void Add(T 1) { data.Add(i); }
public T Find(Predicate<T> algorithm)
{
foreach (T it in data)
if (algorithm(it))
return it;
return null;
}
public T[] FindAll (Predicate<T> algorithm)
{
List<T> results = new List<T>();
foreach (T it in data)
if (algorithm(it))
results.Add(it) ;
return results.ToArray();

Other kinds of operations on the Database not yet implemented (but should be) quickly come to
mind, such as taking some kind of action on each of those returned objects. To be precise, three
kinds of operations should be supported on Database<T>: Filter, Map, and Reduce:

delegate U Accumulator<T, U>(T src, U rslt);

class Database<T> where T : class

{

private List<T> data = new List<T>();

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

14 [XCHAPTER1 PRIMER

public Database() { }
public void AdA(T i) { data.Add(i); }

public IEnumerable<T> Filter (Predicate<T> pred)
{
List<T> results = new List<T>();
foreach (T it in data)
if (pred(it))
results.Add (it) ;
return results;
}
public IEnumerable<U> Map<U> (Func<T, U> transform)
{
List<U> results = new List<U>();
foreach (T it in data)
results.Add (transform(it));
return results;
}
public U Reduce<U> (U startValue, Accumulator<T, U> accum)
{
U result = startValue;
foreach (T it in data)
result = accum(it, result);
return result;

public T Find(Predicate<T> algorithm)

{ return Filter (algorithm) .GetEnumerator ().Current;
;ublic T[] FindAll (Predicate<T> algorithm)

{ return new List<T>(Filter (algorithm)) .ToArray();

When those three operations are in place, any other operation can be defined in terms of those three
through various combinations of them.

By defining their parameters in terms of IEnumerable<T>, instead of as a raw array as the earlier
definitions did, any sort of TEnumerable<T> could be used, including lists, arrays, or even the anon-
ymous iterator defined using the C# 2.0 yield return statement:

public IEnumerable<T> Filter2 (Predicate<T> pred)
{
foreach (T it in data)
if (pred(it))
yvield return it;
}

public IEnumerable<U> Map2<U> (Func<T, U> transform)

The Delegate Strategy [X15

foreach (T it in data)
vield return (transform(it));

In terms of their purpose, Filter is the easiest to grasp — it applies the Predicate to each element
in the Database and includes that element if the Predicate returns true.

Map is less obvious — it applies a Func (an operation) to each element in the Database, transform-
ing it into something else, usually (though not always) of a different type. If, for example, the system
needs to extract a list of all the students’ ages, Map can transform the student into an age:

foreach (int a in
Students.Map (delegate (Student it)
{ return it.Age; }))

Console.WriteLine(a) ;
}

The last, Reduce, is the most complicated, largely because it is the most fundamental — both Map
and Filter could be rewritten to use Reduce. Reduce takes the collection, a delegate that knows
how to extract a single bit of information from the element and perform some operation on it to
yield a rolling result and hand that back. The easiest thing to do with Reduce is obtain a count of all
the elements in the collection, by incrementing that accumulator value each time:

int count =
Students.Reduce (0, delegate(Student st, int acc)
{

return acc++;

1)

Or if for some reason the total of all the students’ ages added together were important, Reduce can
produce it by adding the age to the accumulator each time through:

int sumAges =
Students.Reduce (0, delegate(Student st, int acc)
{

return st.Age + acc;

1)

In truth, this is useless information — what would be much more interesting is the average of all the
Students’ ages, but this is a bit trickier to do with Reduce — because the average is defined as the
total divided by the number of elements in the collection, Reduce has to be used twice:

float averagelAge =
(Students.Reduce (0, delegate(Student st, float acc)
{
return st.Age + acc;
1))
/
(Students.Reduce (0, delegate(Student st, float acc)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

16 [XCHAPTER1 PRIMER

return acc + 1;

1))

But even more intriguingly, a collection of students can be “reduced” to an XML representation by
applying the same approach and transforming a Student into a string representation:

string studentXML =
(Students.Reduce ("<students>",
delegate(Student st, string acc)
{
return acc +

"<student>" +
st.FirstName +
"</student>";

})) + "</students>";

If some of this sounds familiar, it is because much of this was later expanded to be a major part

of the C# 3.0 release. LINQ, Language-Integrated Query, centers on these same core principles.
Using C# 3.0’s capability to define new methods from “outside” a class (extension methods), C# 3.0
defined a series of these methods directly on the collection classes found in the .NET Framework
Class Library, thus making the Database type even simpler:

class Database<T> where T : class

{
private List<T> data = new List<T>();
public Database() { }

public void AddA(T i) { data.Add(i); }

public T Find(Predicate<T> algorithm)

{ return data.Find(algorithm) ;

;ublic T[] FindAll (Predicate<T> algorithm)

{ return data.FindAll (algorithm) .ToArray () ;

And, of course, if the List<T> holding the student objects is available for public consumption, per-

haps via a property named AsQueryable, as is the convention in LINQ, the Students’ ages can be
counted, summed, and averaged using a LINQ expression:

count =
Students.AsQuerayable.Aggregate (0, (acc, st) => ++acc);
sumAges =
Students.AsQuerayable.Aggregate (0,
(acc, st) => st.Age + acc);
averageAge =
Students.AsQuerayable.Aggregate (0.0F,
(acc, st) => ++acc)
/
Students.AsQuerayable.Aggregate (0.0F,
(acc, st) => st.Age + acc);

Lambda Calculus (Briefly) [x17

As can be surmised from the preceding code, the LINQ aggregate extension method is the moral
equivalent of the Reduce written earlier. And as was demonstrated, this means LINQ can be used to
“reduce” a collection of Students into an XML representation.

C# 3.0 also offered a slightly more terse way of specifying those delegates to be passed in to the
Database, something called a lambda expression:

Student s = null;
while (s == null)
{
Console.Write("Please enter your first name:");
string first = Console.ReadLine();
Console.Write("\nPlease enter your last name:");
string last = Console.ReadLine();
s = Students.Find(c => c.FirstName == first &&
c.LastName == last);
if (s == null)
Console.WriteLine("Sorry! Couldn't find you");
}
// Do something with s

The etymology of this name stems quite deeply in computer science history, to a mathematician
named Loronzo Church, who discovered a subtle yet very powerful idea: if mathematical functions
are thought of as things that can be passed around like parameters (just as delegates can), then all
mathematical operations can be reduced to functions taking functions as parameters. And this body
of work came to be known as the lambda calculus, after the Greek symbol that served as the place-
holder symbol for the function name.

LAMBDA CALCULUS (BRIEFLY)

Without getting too deeply into the academic details, Church observed that if the actual function
could be passed around, then various operations that normally seem distinct and individual could be
collapsed together into a single higher-order function.

Consider the following two basic math operations and their C# equivalents:

static int Add(int x, int y) { return x + vy; }
static int Mult(int x, int y) { return x * y; }
static void MathExamples ()
{

int x = 2;

int y = 3;

int added = x + y;

int multed = x * y;

int addedagain = Add(x, vy);

int multedagain = Mult(x, vy);
}

What Church realized is that if the actual operation — adding, multiplying, whatever — is abstracted
away as a parameter, then both of these operations can be described using a single function:

delegate int BinaryOp (int 1lhs, int rhs);
static int Operate(int 1, int r, BinaryOp op)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

18 [XCHAPTER1 PRIMER

return op(l, r);
}
static void MathExamples ()

{

// using explicit anonymous methods
int added = Operate(x, vy,

delegate(int 1, int r){ return l+r; });
int multd = Operate(x, vy,

delegate(int 1, int r){ return 1l*r; });
// using lambda expressions
int addedagain = Operate(x, vy, (1, r) => 1 + r);
int multdagain = Operate(x, vy, (1, r) => 1 * r);

}

When used this way, it doesn’t make a lot of sense, because it would seem obvious to just write
X + v, but now that the operation is abstracted away from the actual point of performing the opera-
tion, any kind of operation can be passed in.

This has some interesting implications. Consider, for example, an all-too-common business rule:
Classes are associated with a given field of study (which must now appear on the class object

as another property, Field), because only certain kinds of students can take certain kinds of
Classes——forexanqﬂe,aStudentstudyhu;Computer Science can take Computer Science
classes, as can students studying video game design, but Computer Science students are forbid-
den from taking anything that won’t help them learn computer science better, such as underwater
Basketweaving classes. Meanwhile, Video game design is a pretty open-ended major and accepts
just about anything except Fashion Design classes, whereas Physics majors will need to know
some Physics and Computer Science but nothing else, and so on. (Like so many of its kind, this
business rule made all kinds of sense back when it was first created, and nobody still with the com-
pany remembers why it was created in the first place, so don’t question it now.) When a student
signs up for a Class, this business rule needs to be enforced, but where?

This kind of validation has historically plagued the object-oriented designer; effective enforcement
of the rule requires knowledge coming from two different places, the Student and the class. As
such, it seems to defy logical placement: If the validation routine lives on the Student, the student
class then has to have awareness of every kind of class in the system, a clear violation of separation
of concerns, and vice versa if the validation routine lives on the Class.

If the validation is abstracted away, however, now the validation can occur without having to know
the actual details yet:

delegate bool MajorApproval (Class cl);
class Student : Person
{

//

private MajorApproval m_majorApproval;
//

public MajorApproval CanTake
{

Lambda Calculus (Briefly) [><19

get { return m_majorApproval; }

class Class
{
//

public bool Assign(Student s)
{
if (s.CanTake(this))
{
Students.Add(s) ;
return true;
}

return false;

}

Now, the validation code can be kept in a third place, thus localizing it to neither the student nor
the class, but someplace accessible to either, such as a Programsignup collection someplace that
the student constructor can access (or the Class.Assign method could consult directly, depending
on the developer’s sense of aesthetics):

ProgramValidation["ComputerScience"] =

¢ => c¢.Field == "Computer Science";
ProgramValidation["Physics"] =
c => c.Field == "Computer Science" ||
c.Field == "Physics";
ProgramValidation["Psychology"] =
¢ => c.Field == "Psychology" ||
c.Field == "Grade school";

ProgramValidation["Grade school"]
c => false;
ProgramValidation["Video game design"] =
¢ => c.Field != "Underwater Basketweaving";

It should be noted that yes, something similar to this could be modeled in a traditional object-ori-
ented way, usually by modeling the rules as function objects (like the Strategy approach earlier), also
sometimes referred to as functors, and has been around for quite a while; C and C++ used pointers-
to-functions to do things like this for decades.

The lambda calculus also permits more than just “lifting” the operation out and capturing it,
though. As originally expressed, the lambda calculus also states that if a function can accept a func-
tion as a parameter, then all functions are essentially functions of one parameter, even though they
may appear otherwise.

For example, returning to the basic mathematic operation of addition, the basic C# method of
earlier:

static int Add(int x, int y) { return x+y; }
static void MoreMathExamples ()
{

int result = Add(2, 3);

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

20 [XCHAPTER1 PRIMER

In the lambda calculus, this operation can be thought of as asking a function to take an int and
another function, where that second function takes an int and returns an int back. So, in C# 2.0,
converting this to look like what the lambda calculus implies, starting with the add method con-
verted to a delegate operation:

private delegate int Operation(int 1, int r);
static void MoreMathExamples ()
{

int result = Add(2, 3);

Operation add = delegate(int 1, int r) { return 1 + r; };
int result2 = add(2, 3);
}

then means the delegate can be broken up into two different delegates — the first handing back a
delegate that in turn knows how to do the actual operation:

delegate InnerOp DelegateOp(int r);
delegate int InnerOp(int 1);
static void MoreMathExamples ()
{
int result = Add(2, 3);

Operation addl = delegate(int 1, int r) { return 1 + r; };
int result2 = addl (2, 3);

DelegateOp add2 = delegate(int 1)
{
return delegate(int r)
{
return 1 + r;
Y
Y
int result3 = add2(2) (3);

This process is known as currying, named after Haskell Curry, another mathematician who was
famous (among mathematicians, at least). Because this sequence of steps should be applicable for
more than just integers, a quick application of generics makes it available for any type:

Func<int, Func<int, int>> add4 =
delegate(int 1)
{
return delegate(int r)
{
return 1 + r;
}i
Y
int resultd = add4(2) (3);

Then, on top of all this, the whole process can be further genericized by creating a standard-purpose
method for doing it:

delegate U Op<Tl, T2, U>(T1 argl, T2 arg?);
delegate U Op<Tl, U>(T1 argl);

Lambda Calculus (Briefly)

static Op<Tl, Op<T2, U>> Curry<Tl, T2, U>(Op<Tl, T2, U> fn)
{
return delegate (Tl argl)
{
return delegate (T2 arg2)
{
return fn(argl, arg2);
Y
Y
}
static void MoreMathExamples ()
{
int result = Add(2, 3);

Operation add2 = delegate(int 1, int r) { return 1 + r; };
int result2 = add2(2, 3);

DelegateOp add3 = delegate(int 1)
{

return delegate(int r)

{
return 1 + r;
}i
}i
int result3 = add3(2) (3);

Func<int, Func<int, int>> add4 =
delegate(int 1)
{
return delegate(int r)
{
return 1 + r;
Y
Y
int resultd = add4(2) (3);

Op<int, int, int> add5 =
delegate(int 1, int r) { return l+r; };
int result5 = add5(2, 3);
Op<int, Op<int, int>> curriedAdd = Curry(add5);
int result6 = curriedadd(2) (3);

It’s horribly obtuse, and no sane C# developer would write add this way...unless they wanted to
build up chains of functions calling functions in a highly generic way:

Op<int, int> increment = curriedAdd(1l);
int result7 = increment (increment (increment (2)));

Although it seems awkward to think about at first, composing functions in this way means a new
level of reusability has opened up, that of taking operations (methods) and breaking them into
smaller pieces that can be put back together in new and interesting ways.

The most obvious use of this is to “pipeline” functions together in various ways, permitting reuse
of behavior at a level previously unheard of in the object-oriented space. Functionality can now be

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

22 [XCHAPTER1 PRIMER

written in small chunks, even as small as simple operations and then composed together, such as
what might be needed for input validation code for a web application. However, making this work
in a syntax that doesn’t drive the average C# developer insane (if it hasn’t already) is difficult, which
leads to the next question — what if we could somehow make the syntax cleaner and easier to read
and understand?

TYPE INFERENCE

One thing is apparent from all this, particularly the definition of the curry method: This is heavily
genericized code, and it’s not easy to read. It’s a long way from List<T>! Fortunately, C# 3.0 intro-
duced anonymous local variables, effectively informing the compiler that it is now responsible for
determining the type of the declared local variable:

var add9 = Curry(add5) ;
int result9 = add9(2) (3);

Here, the compiler uses the context surrounding the variable declaration to figure out, at compile-
time, precisely what the type of the local variable should be. In other words, despite the vague-
sounding var syntax, this is still a full statically-typed variable declaration — it’s just that the
programmer didn’t have to make the declaration explicit because the compiler could figure it out
instead.

Theoretically, this means now that the compiler can remove responsibility for the “physical details”
about the code from the programmers’ shoulders:

var x = 2;
var y = 3;
var addl0 = add9 (x) (v);

Are x and y local variables, or are they property declarations? If these were members of a class,
would they be fields or properties or even methods? Is add10 a method or delegate? More important,
does the programmer even care? (In all but a few scenarios, probably not.)

Ideally, this is something that could be layered throughout the language — such that fields,
properties, method parameters, and more, and could all be inferred based on context and usage,
such as:

// This is not legal C# 3.0
class Person
{
public Person(var firstName, var lastName, var age)
{
FirstName = firstName;
LastName = lastName;
Age = age;
}
public string FirstName { get; set; }
public string LastName { get; set; }
public int Age { get; set; }
public string FullName {
get { return FirstName + " " + LastName; }

}

Type Inference [X23

C# 3.0 provides some of this, via the automatic property declaration — it assumes the task of creat-
ing a field and the get/set logic to return and assign to that field, respectively, but unfortunately,

C# 3.0 will choke on the var declaration as a method parameter or as a field. And 3.0 allows only
inference for local variable declarations — any attempt to use these things as fields in an object will
require the explicit declaration and, potentially, all the disconcerting angle brackets.

Additionally, looking at the previous example, some of C#’s syntactic legacy begins to look awk-
ward — specifically, the use of the var as a type prefix is somewhat redundant if the compiler is

going to infer the type directly, so why continue to use it?

// This is not legal C# 3.0
class Person

{

public Person(firstName, lastName, age)
{

FirstName = firstName;

LastName = lastName;

Age = age;
}
public FirstName { get; set; }
public LastName { get; set; }
public Age { get; set; }
public FullName {

get { return FirstName + " " + LastName; }

}

Despite the compiler’s best efforts, though, it may be necessary to provide the type as a way of
avoiding ambiguity, such as when the compiler cannot infer the type or finds any number of poten-
tial inferences. FirstName and LastName can be assumed to be strings, since the FullName property
adds them together against a constant string, something (presumably) only strings can do. aAge,
however, is an ambiguity: It could be just about any object type in the system, because it is never
used in a context that enables the compiler to infer its numerical status. As a result, the compiler

needs a small bit of help to get everything right.

If the type declaration prefix syntax has been thrown away, though, then something else will have to
take its place, such as an optional type declaration suffix syntax:

// This is not legal C# 3.0
class Person
{
public Person(firstName, lastName, age : int)
{
FirstName = firstName;
LastName = lastName;
Age = age;
}
public FirstName { get; set; }
public LastName { get; set; }
public Age { get; set; }
public FullName {
get { return FirstName + " " + LastName; }

}

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

24 [XCHAPTER1 PRIMER

Of course, types need not be the only thing inferred by the compiler; because public is the most
common access modifier for methods, constructors and properties, and private is most common
for fields, let those be the inferred default:

// This is not legal C# 3.0
class Person

{
Person (firstName, lastName, age : int)
{
FirstName = firstName;
LastName = lastName;
Age = age;
}
FirstName { get; set; }
LastName { get; set; }
Age { get; set; }
FullName {
get { return FirstName + " " + LastName; }
}
}

While syntax is under the microscope, the constructor syntax is a bit strange — why is repeating
the type’s name necessary? And because most types have a principal constructor to which all other
constructors defer, if it even has multiple constructors at all, that constructor should have a more
prominent place in the type’s declaration:

// This is not legal C# 3.0
class Person(firstName, lastName, age : int)
{
FirstName { get; set; }
LastName { get; set; }
Age { get; set; }
FullName {
get { return FirstName + " " + LastName; }

}

Problem is, the constructor body is now missing, and the assignment of the constructor parameters
to the respective properties is lost, unless somehow the body of the class can serve as the body of the
constructor, and the property declaration can know how to “line up” against those parameters:

// This is not legal C# 3.0
class Person(firstName, lastName, age : int)
{
FirstName { get { firstName } set; }
LastName { get { lastName } set; }
Age { get { age } set; }
FullName {
get { return FirstName + " " + LastName; }

Type Inference [X25

Unfortunately, the syntax is getting tricky to parse, particularly if the constructor body is now
implicitly “inside” the class. It’s going to have difficulty knowing what denotes a member of the
class and what denotes a local variable inside the constructor body. Even if the compiler could,
the programmer may not, so an explicit declaration of what is a member and what isn’t would be

helpful:

// This is not legal C# 3.0
class Person(firstName, lastName,

{

}

member FirstName { get { firs
member LastName { get { lastN
member Age { get { age } set;
member FullName {

get { return FirstName + "

age : int)
tName } set; }
ame } set; }

}

" + LastName; }

If the compiler’s going to infer properties, let it infer the default property implementation, a get/set
pair against a field backdrop, and assign its first value:

// This is not legal C# 3.0
class Person(firstName, lastName,

{

}

member FirstName = firstName;
member LastName = lastName;
member Age = age;

member FullName = FirstName +

age : int)

" " + LastName;

Methods, of course, would have similar inferential treatment:

// This is not legal C# 3.0
class Person(firstName, lastName,

{

}

member FirstName = firstName;
member LastName = lastName;
member Age = age;
member FullName = FirstName +
override ToString() {
return String.Format ("{0}
FirstName, LastName,

Y

age : int)

" " + LastName;

{1y {2},
Age) ;

Language-wide type inference is turning out to be quite the beneficial thing to have. Fortunately,
the compiler is still fully aware of the types of each of these constructs, so static type safety
remains viable. But if this compiler is going to continue to take burdens off the programmer’s
shoulders, then some kind of facility to address the burdens of concurrent-safe programming is

necessary.

Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

26 [XCHAPTER1 PRIMER

On top of all this, the language can start to make the explicit “generic” declarations of the earlier
C# operations less necessary, because now the compiler will have the ability to infer the actual types
of the parameters, and with it, the ability to infer them as generic type parameters:

var swap = delegate (1, r) {

var temp = r; r = 1; 1 = temp;

}i

Here, the compiler can infer that 1 and r are of the same type, but that actual type is entirely irrele-
vant, because any type (class or struct, user-defined or BCL) can satisfy the inferred type parameters
for 1 and r.

This would make much of the earlier code around currying so much, much easier to write and
understand.

IMMUTABILITY

As an old joke goes, a man walks into a doctor’s office and says, “Doctor, it hurts every time I do
this” and jabs his thumb into his eye. The doctor, without missing a beat, says “Well, don’t do that,
and you’ll be fine.” Concurrency experts have long had a similar joke: If it hurts to write the locking
code around every time the program changes state, then don’t change state and you’ll be fine. After
all, if the variable never changes its state, then no update operation is possible and thus no locking
code around those updates are necessary.

Although the proponents of fully-immutable variable state (also known as the “pure functional
language”) continue to wage loud and copious arguments against those who favor the merits of
partially mutable variable state (the “impure language”), too many systems and libraries in the
.NET ecosystem rely on the capability to change variable state in a running program to abandon
the idea of mutable state entirely. That said, many objects in a .NET program remain immutable
when initialized, and many other types could do so with little concern or change to their use:

Person talbott = new Person("Talbott", "Crowell", 29);
Person olderTalbott = new Person(talbott.FirstName,
talbott.LastName, talbott.Age + 1);

Enforcing this, however, requires the developer writing the class type to ensure there’s no way to
modify the contents of those instances. This means that fields must be marked as read-only and
properties with just a “get” handler.

If, however, the presumption is that most objects will remain unchanged when created, then rather
than assuming the objects should be mutable by default, the language can make the opposite
assumption and require the use of a keyword to indicate mutability.

Thanks to the power of inference, the programmer no longer has to stress over the low-level physical
details of how the code projects itself onto the underlying CLR. Plus, perhaps surprisingly, none of
the earlier syntax needs to change — the compiler simply chooses to generate the code differently, to
be immutable by default instead of mutable.

Expressions, Not Statements [X27

Of course, now that the situation has reversed itself, if the programmer does want the ability to

modify the internals of an object, the programmer must explicitly mark the parts of the class that
need to be mutable:

// This is not legal C# 3.0
class Person(firstName, lastName, age : int)
{
member FirstName = firstName;
member LastName = lastName;
mutable member Age = age;
member FullName = FirstName + " " + LastName;
override ToString() {
return String.Format("{0} {1} {2}",
FirstName, LastName, Age);

Y

This will not be enough to make the world safe for multiple threads of execution, but it will reduce
the amount of thinking required to write thread-safe code.

EXPRESSIONS, NOT STATEMENTS

While the language syntax and semantics are up for discussion, an inconsistency within the tra-
ditional imperative language presents itself for possible correction: Certain constructs within
the imperative language are expressions, yielding a result value, while other constructs are state-
ments, yielding no value whatsoever. And in some languages, particularly those descending from
the C++ wing of the language family tree, the ultimate inconsistency presents itself: Two differ-
ent language constructs that do almost the same thing, except that one is a statement and the
other an expression:

var anotherResult = false;

if (x == 2)
anotherResult = true;
else
anotherResult = false;
var yetAnotherResult = (x == 2) ? true : false;

The inconsistency is maddening. Particularly when it could be applied to a variety of other con-
structs — why doesn’t switch/case have a similar kind of expression construct?

var thirdResult =
switch (x)
{
case 0: "empty"; break;
case 1: "one"; break;
case 2: "two"; break;
default: "many"; break;

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

28 [XCHAPTER1 PRIMER

If every (or most every) language construct is an expression, it means the language takes a more
input-yields-output style to it, which reinforces the general nature of testable programs, rather than
just as a series of statements.

SUMMARY

This chapter began with a litany of the flaws of the object-oriented mindset and detailed what a new
language might look like — one in which functions and methods were given first-class citizen status,
the compiler could infer static type information from more of the language constructs, variable and
field immutability serves as the default, and expressions formed the core of the language instead of
imperative statements.

In short, we have just authored a language strikingly similar to the F# programming language. The
remainder of this book details that language.

PART |
Basics

» CHAPTER 2: Lexical Structure
» CHAPTER 3: Primitive Types

» CHAPTER 4: Control Flow

» CHAPTER 5: Composite Types

» CHAPTER 6: Pattern Matching

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Lexical Structure

WHAT'’S IN THIS CHAPTER?

® Understanding basic syntax

® Defining values and identifiers

In any language, some basic lexical ideas have to be laid down before programmers can begin
to understand the concepts behind the language — questions such as “What makes a com-
ment?” or “What is allowed in identifier names?,” although intrinsically boring in many ways,
have to be defined before any further progress into the language’s structure and form.

F#’s lexical structure derives strongly from its immediate ancestor, OCaml, which is itself a
derivative of the pure functional language ML. This means that for the most part, although F#
strives to be .NET-friendly in terms of its syntax, the C# and Visual Basic developer can find a
number of new and interesting syntactic ideas, some of which will be surprising. Fortunately,
most of those will be pleasant surprises because much of the syntax is less restrictive than the
other .NET languages offered from Microsoft.

COMMENTS

The easiest place to begin with any language is a simple definition of what makes a comment
(meaning, syntax that the compiler will ignore during processing). F# supports three different
styles of comments:

© Multi-line comments using the (* and *) delimiters, such as:

(* This is
a multi-line
comment *)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

32 [XCHAPTER2 LEXICAL STRUCTURE

Note that multi-line comments nest, meaning that the multi-line comment will only be ter-
minated when the number of end-comment pairs match the number of begin-comment pairs
preceding it.

© Single-line comments using the // delimiter, which signals a comment until the next end-
of-line, such as

// This is a single-line comment

© Documentation comments using the /// delimiter, which signals a special form of comment
(similar to the C# comment of the same form) that can be used to extract documentation for
the element that follows.

Of the three, the multi-line comment form isn’t seen much in general F# usage, and for the most part
is present solely to support F# cross-compiling OCaml code.

The documentation comment supports much, if not all, of the same kinds of XML documentation
“hints” that the C# documentation syntax supports, such as:

/// <summary>This is a cool function</summary>
/// <remarks>Use it wisely</remarks>

Note that if developers stick primarily to the single-line and documentation comment forms for reg-
ular use, swatches of code can be temporarily removed from use via the multi-line comment form,
which can be particularly useful given the nesting nature of multi-line comments.

IDENTIFIERS

Identifiers in F# generally follow the same rules as C# or C++, in that any combination of
Unicode characters defined as letters (uppercase or lowercase), digits, and the underscore are
allowed, provided that the first character is a letter. For the C# developer, this is identical to how
C# operates.

Like most languages, F# reserves certain character combinations for its own use, typically as key-
words in the language. F# defines the following as unacceptable identifiers, either because they
are keywords, or because the F# team wants to reserve them for future use (meaning they might
become keywords in a future release of the F# language):

abstract and as asr assert atomic base begin break checked class component
const constraint constructor continue default delegate do done downcast
downto eager elif else end event exception extern external false finally
fixed for fun function functor global if in include inherit inline
interface internal land lazy let lor 1lsl lsr 1lxor match member method mixin
mod module mutable namespace new null object of open or override parallel
private process protected public pure rec return sealed sig static struct
tailcall then to trait true try type upcast use val virtual void volatile
when while with yield

Not all these identifiers are currently used, and some may end up never being used, depending on
future directions the language takes. Even should the language later permit using them, none of the
preceding words should ever be used as an identifier, for developer sanity if nothing else.

Preprocessor Directives [X33

In addition, F# reserves a special syntax when an identifier ends in 2, !, or # for its own use. The
most obvious example of this is the 1et! syntax used for asynchronous workflows. Again, even
should the language permit their use in later versions of the language, avoid using them.

Some sample identifiers, and illegal identifiers, appear here:

let v =1

let aReallyLongIdentifierName = 2
let _underscores_are_OK_too = 3

let soAreNumbersl23AfterAletter = 4

Note that, as with all Microsoft Visual Studio-integrated languages, the IDE flags illegal identifiers
with the ubiquitous “red-squiggly.”

Like most languages, F# has its share of surprise moments, in which something
that works generates unexpected results. One interesting edge case emerges
within the language; if an identifier containing the s symbol is used, it appears
to work. For example, consider 1et abcsfoo = 5. However, what’s happening
here is not the creation of a single identifier, but two identifiers (one on each side
of the &), each with the same value.

For those situations in which F# has to consume an identifier (a class, method, field, property, or
some other element) from an assembly that happens to have the same syntax as a reserved word, F#
enables for a double-backtick syntax that permits the “escaping” of the identifier: Simply wrap the
otherwise prohibited term in double-backtick characters (as in * “assert" ‘), and the F# parser will
obligingly accept it. As a general rule, however, F# developers should avoid using this syntax for

the purpose of overloading existing F# keywords or reserved words, and should take care to avoid
creating identifiers that will conflict with other languages’ reserved words that are likely to consume
F# assemblies (such as C# and Visual Basic), assuming it can be helped at all. This syntax is mostly
intended for making it easier to consume assemblies written in non-F# languages, where other pro-
grammers accidentally created identifiers that conflict with F# reserved words.

PREPROCESSOR DIRECTIVES

F#, like C#, uses “hash tags” to indicate preprocessor directives, directions to the parser on how to
consider the act of parsing. F# employs a small number of preprocessor directives, all of which use
the traditional C-style hash syntax, such as #1ine or #1ight. These are processed by the compiler
before considering any other aspect of the language, and aside from whatever effect they have dur-
ing compilation, provide no runtime overhead or impact. The full list of preprocessor directives
recognized by the F# compiler is given here:

O #line: Sets the line number for the source file immediately following this line. By default, the
first line in an F# file is 1.

O 4if #else #endif: As the names imply, these directives evaluate whether an identifier has
been defined (typically using the ~define flag given to the compiler) at compile-time, and

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

34 [XCHAPTER2 LEXICAL STRUCTURE

take either the code between the #if and #else, or between the #else and #endif, for pro-
cessing. Note that this means that any syntactic or semantic errors in the block of code not
taken are never checked by the compiler.

Other preprocessor directives may be added to the language later, depending on future directions.

SIGNIFICANT WHITESPACE

Languages frequently need to find some way to “set off” a block of code from the code around
it — the “true” branch of a decision statement or the body of a function or method, for exam-
ple — and where some languages choose to use some kind of syntactic “pairing,” such as C#s
“(“/”}” characters or Visual Basics “Begin”/”End” tokens, F# chooses instead to use significant
whitespace, using block indentation as the means by which blocks of code are set off from sur-
rounding context.

Additionally, F# also requires no explicit end-of-line terminator,” which means overall that the
language has far fewer syntactic “marker”s in the code, relying instead on the implicit structure of
the indentation to indicate the structure of the code. Note that this means that developers must be
careful to line up indentation levels consistently across the body of the program, because F# uses the
indentation level of the “previous” lines to know precisely when a block has ended. For example, in
the following:

let outer =
let x =1
if x = 1 then
System.Console.WriteLine("Hello, F#")
else
System.Console.WriteLine("Uh... how did this happen?")

the outer declaration creates one scope block, and inside of that, a new value, x, is declared, and an
if/then/else statement (discussed in more detail in Chapter 4) whose true and false branches each
form a new block.

If, for some reason, the else block is off by one or more whitespace characters — either indented
too far or too little — the language may not know which if block this else is paired up against,
and will flag the entire construct as an error (actually, for this precise example, the compiler will
be able to adjust... but the programmer may not be so lucky, and other, less-trivial, examples
will flag an error):

let outer =
let x = 2
if x = 1 then
System.Console.WriteLine("Hello, F#")
if x = 1 then
System.Console.WriteLine("Again!")
else
System.Console.WriteLine("Uh... how did this happen?")

* Except when writing statements in the interactive F# window inside Visual Studio or the fsi.exe F#

«©, .

interpreter window, when “;;” is used to indicate that the user is not continuing input onto a new line.

Summary [X35

Note that F# can be made back into a whitespace-insignificant language by turning off #1ight
mode, but this then forces the use of begin, end, in and ; tokens to denote blocks, according to the
syntax of the OCaml language (to which F# originally intended to be syntax-equivalent, back when
it was “just” a research language). Most F# developers agree that #1ight mode is the superior mode
to use, and it will be the assumed mode for the code samples for the rest of this book.

SUMMARY

F# uses a number of lexical constructs similar to existing .NET languages, but also several lexical
conventions that are brand-new to the platform. For the most part, experienced .NET developers
can adjust to F#’s quirks without much work, but a few “gotchas” compared to C#/Visual Basic
do exist. Fortunately these disappear quickly as the new F# developer gains experience with the
language.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Primitive Types

WHAT'’S IN THIS CHAPTER?

® Understanding primitive types
® Declaring primitive type instances

® Applying operators

Like all languages that run on top of the CLR, the F# language provides a core set of
primitive types that offer basic integer and floating-point arithmetic capabilities,
character string support, Boolean types, and so on. In general, these map to the corre-
sponding CLS types (System.Int16, System.Int32, and so on), as described next, but a
few types are new to F# and come from the F# libraries. These types are fully accessible
to other languages, such as C# and Visual Basic but obviously have no native language
support there and need to be used as any other .NET type is (that is, via fully qualified
type names).

BOOLEAN

Probably the simplest primitive type in F# is the bool type, which corresponds to the CLR’s
underlying System.Boolean type, and has two possible values, true and false.

Booleans support the usual range of logical operations, including && (logical AND)
and | | (logical OR), and otherwise behave just as Boolean values do in any other .NET
language.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

38 [XCHAPTER3 PRIMITIVE TYPES

NUMERIC TYPES

F# supports a wide range of numeric types, 8 bits in size to 64, in both signed and unsigned ver-
sions, as shown here:

TYPE DESCRIPTION .NET NAME LITERALS
Byte 8-bit unsigned integer System.Byte 3uy, 0xFuy
Sbyte 8-bit signed integer System.SByte 3y, OxFy
intlé6 16-bit signed integer System.Intl6 3s, OxFs
uintl6 16-bi unsigned integer System.UIntl6 3us, OxFus
int, int32 32-bit signed integer System.Int32 3, OxF
uint32 32-bit unsigned integer System.UInt32 3u, OxFu
inté64 64-bit signed integer System.Int64 3L, OxFL
uint64 64-bit unsigned integer System.UInt64 3UL, O0xFUL
nativeint Machine-sized integer System.IntPtr 3n, 0xB8000n
unativeint Machine-sized unsigned System.UIntPtr 3un, 0xB8000un
integer
bigint Arbitrarily large integer System.Numerics. 3I
BigInteger

Each of these types can be initialized to decimal, hexadecimal, octal, or binary constants. Decimal
constants are represented simply with the numeric value itself, whereas the other three must be prefixed
with a flag indicating whether it should be hexadecimal (0x or 0x), octal (0o or 00), or binary (0b or 0B).
This means that the following literals, 0xF, 0020, 15 and 0b1111, are all the same value (15).

For each of these types, with the exception of the bigint type, the traditional algebraic operators
are supported, providing unchecked (that is, wraparound in the event the value exceeds the avail-
able representation size) operations for addition, subtraction, multiplication, division, and modulo.
Operations that should throw an exception if they overflow (of type System.OverflowException)
are defined in the Microsoft.FSharp.Core.Operators module; opening modules and using opera-
tions defined therein is discussed in more detail in Chapter 11. Any sort of integer division by zero
raises a standard System.DivideByZeroException.

Because of the dangers of overflow, even with the largest-precision types, the bigint type is the pre-
ferred type for handling exceedingly large values, such as the total size of the U.S. budget or the royalty
checks for programming language book authors. (Technically, the bigint type isn’t a primitive type,
according to the language specification, but given its syntax and role, it’s helpful to think of it as such
for all practical purposes.)

Numeric Types [X39

The nativeint and unativeint types are typically used only for interoperability with native code
that receives and produces machine word-sized values, that is, pointers. They are rarely, if ever, used
for arithmetic purposes.

The Microsoft.FSharp.Core.Operators module also defines a number of mathematical opera-
tions, listed here, which behave as their names imply. (These operators are also defined for the
floating-point types, described later.)

abs
cos
sin
tan
cosh
sinh
tanh
acos
asin
atan
ceil
floor
truncate
exp
log
log10

® © © © © © @@ © © © © © © © o o©o

This is not an exhaustive list, but a representative sample of the operators found in that
namespace. Each of these behaves as its name implies; ceil returns the ceiling (rounded up),
floor returns the floor (rounded down), and truncate returns the rounded (traditional closest-
to-zero semantics) integer value for floating-point values. Exponentiation (power) is done using
the ** operator.

Opening a module (needed in order to use these operators) is discussed in Chapter 11.

In addition, the following comparison operations are all defined:

© ©o
vV oA
1l

©
v
I

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

40 [XCHAPTER3 PRIMITIVE TYPES

<>

min

® © 6 ©

max

And again, each behaves as its name implies. (C# and C++ developers, take special note that equal-
ity uses one =, not two, and that not-equals uses <> instead of the C-family !=. Assignment is done
differently in F#, as discussed in Chapter 13.)

BITWISE OPERATIONS

All the previous integer types support bitwise operations — operations that take into account the
underlying bitwise representation — such as AND, OR, eXclusive OR, and so on. The operators to
carry out these operations are definitely nontraditional, compared to the C family of languages, but
aren’t difficult to understand or follow. Consider the following:

OPERATOR DESCRIPTION EXAMPLE (WITH RESULTS)

&&& bitwise AND 0b1111 &&& 0b1100 -> 0b1100

[bitwise OR 0b1111 ||| 01100 -> 0b1111

A bitwise exclusive OR 0bl1111 ~"" 0b1100 -> 0b0011
~ bitwise NOT ~~~ 0b11110000uy = 0b0000111luy
<<< bitwise shift left 0b0110 <<< 1 -> 0b1100

>>> bitwise shift right 0b0110 >>> 1 -> 0b0011

Generally, bitwise operations are not necessary in F# because their principal use in traditional
C/C++ code was to carry a variety of “flag”-style information or concise values packed into a
single variable to save space; “flags” are typically better represented in other ways in F# (see
Chapter 5 for details), and the CLR will do its own packaging of values to save space, so such
measures are often counterproductive.

FLOATING-POINT TYPES

Floating-point types in the F# language hold values that should not or cannot be rounded up to
whole numbers.

TYPE DESCRIPTION .NET NAME LITERALS

single, float32 32-bit IEEE floating-point System.Single 3.2f, 1.3e4f

double, float 64-bit IEEE floating-point System.Double 3.2, 1.3e4

Arithmetic Conversions [X41

TYPE DESCRIPTION .NET NAME LITERALS
decimal High-precision decimal System.Decimal 19M, 3.2M
bignum Arbitrary-precision rationals Microsoft. 19N, 3.2N
FSharp.Math.
bignum

Like all CLR-based languages that use the system.Single and System.Double IEEE-based types,
floating-point arithmetic is inherently inaccurate — adding the values 1.0 and 1.0 does not neces-
sarily produce 2.0, but could produce 1.9999999. For this reason, any operations that require high
accuracy should use the decimal or bignum types instead of single/float32 or double/float.

The bignum type, unlike decimal or single or double, does not store its representation in a
decimal format, instead preferring to store it as an actual fraction, tracking both numerator and
denominator. This guarantees the highest degree of precision, but at the cost of having to do the
fractional mathematics directly when looking to convert it to a floating-point representation.
Fortunately, F# supports all the major mathematical operations on bignum types, performing the
appropriate fractional math.

With the release of Visual Studio 2010, Microsoft moved the bignum definition
to the F# PowerPack, which is a useful and near-mandatory set of supplemental
material available for free download at http: //fsharppowerpack.codeplex.com.

Note also that F# understands two special floating-point constants, (positive) Infinity and (nega-
tive) ~-Infinity, which will be the result of any floating-point division by zero.

ARITHMETIC CONVERSIONS

Unlike the C-family of languages, F# will not do implicit type conversion among numeric types,
instead requiring manual conversion. This is different from C# or C++, where conversion from inte-
ger to floating-point values is commonly expected; this means that the following C# code:

int x = 12;

float v = 2.0;

var result = x / y; // returns 6.0

when translated to F#, has to be explicitly converted, like this:

let i = 4 // int constant

let f 4.0 // float32 constant

// let result = 1 * £ will fail; i and f not the same type
let result = (float32 i) / £

The conversion is done by explicitly naming the type to convert to, in much the same way that a
downcast is written in C#, without the parentheses. Note, however, that the parentheses around

the conversion are necessary — without them, the compiler sees the multiplication first, and tries
Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

42 [XCHAPTER3 PRIMITIVE TYPES

to multiply i and £ and then take the result and convert it to a float32, which will fail to compile,
because again now i and f are not the same type.

STRING AND CHARACTER TYPES

F#, like all CLR-based languages, has an intrinsic notion of a string type, a sequence of characters
manipulated as a single entity. The string type is a synonym for the System. String type from the
Base Class Library and supports all the methods defined there; therefore, to obtain the length of a
string, simply use the Length property, just as C# or Visual Basic would do.

TYPE DESCRIPTION LITERALS .NET NAME
string String "Katie" System.String
bytel] Literal byte array "ABCD"B System.Byte[]
char Character ‘¢! System.Char

Note that strings can be either “escaped,” meaning that strings normally recognize the backslash
character (\) as an “escape” to allow for nonprintable character sequences (such as the linefeed or
newline characters) in strings, or “verbatim,” meaning that the string contents are never escaped.
Verbatim strings must be prefixed with the @ character (just as in C#), as in:

// This is an escaped string--double backslashes are
// necessary to represent a single backslash character
"C:\\Prg\\FSharp\\Examples" // escaped string;

// Verbatim string--no escaping takes place
@"C:\Prg\FSharp\Examples"

Note that in F#, strings can also span lines without having to close off the string, re-open a new
string on the next line, and concatenate the two (as is necessary in C#). This is known as a multi-
line string literal.

The literal byte array type is useful when working with binary protocols and file formats, particu-
larly for magic numbers and begin/end sequences that appear in the content stream.

Strings can also be concatenated using the + operator or the .NET Framework Class Library class
System.Text.StringBuilder, just as other CLR languages can.

Because the F# string is a System.String at the CLR level,* all the members of the system.String
class are also accessible to F# code, so the usual litany of operations familiar to C# and Visual Basic
programmers, such as the Length property to return the length of the string, are all accessible. More
on F# compatibility and interoperability with other CLR languages is given in Chapter 18.

*Actually, this isn’t quite 100% true — an F# string is an instance of F#’s own string type, but all the
System.String members are available on an F# string, so practically the statement holds true.

Units of Measure Types [X43

UNIT

The Unit type in F# is a special type, one that has no direct equivalent in traditional object-oriented
or imperative programming languages. In practice, to the C# and Visual Basic developer, Unit is a
combination of both null and System.void. In essence, unit is the type that represents no type
(similar to System.void) and has one value only (given by the literal (), similar to nu11). It is used
in those situations in which the value returned from an expression needs to represent the case where
there is no value to be returned.”

Developers familiar with C# and Visual Basic may find the general disdain for null and void to be
confusing at first; null, in particular, is a staple resource for those languages to indicate a lack of
response in a return value. F# provides alternative ways to represent the lack of a response — the
option type — and is described in more detail in Chapter 5.

@ Note that F# does support the keywords null and void, and they are used as
one might expect — the first as a value and the second as a type, but the princi-
pal use for these two centers around the area of .NET interoperability. More on
null and void can be found on Chapter 18.

UNITS OF MEASURE TYPES

In addition to the primitive types provided here, F# provides a feature, colloquially known as units-
of-measure, that allows an F# programmer to annotate an instance of a primitive type with some
additional information intended to describe the “units” for this value. This is intended to better sup-
port the real-world, in which calculations frequently are done with a unit system either explicitly or
implicitly applied to the calculation.

For example, consider a function in a physics simulation program that needs to calculate the trajec-
tory of an artillery shell fired from a gun.** The shell will have an initial velocity, but this velocity
will decrease over time, based on its angle and the pull of gravity.

Without getting into the mathematics too deeply, several different “units” are being expressed here,
and if the programmer is not careful, mistakes in the code can appear if the right values are not
converted to the appropriate “units” type during the calculations. This is less trivial than it might
seem at first — both space programs (NASA and the European Space Agency, to name a few) and
financial institutions have suffered losses measured in millions of $US because of flawed unit-based
calculations.

*Obviously, this is a confusing statement and isn’t necessary for the practicing programmer to spend a lot of
time worrying about — simply know that when void or null might have applied in C#, or Nothing in VB, use
unit and () instead.

**The full source for this program is found on Chris Smith’s blog, under the name “Burning Land.”

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

44

[XEHAPTER 3 PRIMITIVE TYPES

Defining a new unit of measure requires a simple declaration of what name the unit-of-measure will
use, annotated by the Measure attribute recognized by the compiler. (Attributes are described in
more detail in Chapter 12.) When declared, this unit-of-measure can be used to “annotate” a primi-
tive type value or variable (typically of float, float32, or decimal type, though signed integer
types are also acceptable) and provide the additional type checking to ensure that units-of-measure
are not combined in illegal ways. So, given the following declaration:

[<Measure>] type usd
[<Measure>] type euro

the compiler recognizes two new unit-of-measure types to be defined, one representing (presumably)
U.S. dollars, the other, European euro.

Thus, the following function defines a usd-to-euro conversion, and the compiler understands the
unit-of-measure conversions as part of the function’s signature:
let usdRoyaltyCheck = 1500000.00<usd>

let usdToEuro (dollars : float<usd>) =
dollars * 1.5<euro/usd>

When described in the compiler’s Intellisense window, it clearly indicates that the usdToEuro func-
tion takes a single parameter of type float<usd> as input and returns a value of type float<euro>
as the result from the function. It knows this by virtue of the conversion constant being defined as a
unit-of-measure that, as all conversion constants do, is expressed as a ratio of <euro> to <usd>, in
this case, 1.5 <euro> to the <usd>.

Note that this doesn’t mean that the F# compiler has built-in knowledge of physics or accounting

or mathematics or any other domain — the units are simply parsed and compared as-is, leaving F#
developers free to create their own units and unit systems as necessary or desirable. The units can
be called by any legitimate identifier, and no particular relationship is assumed by their names, so
that <m> and <km> aren’t intrinsically understood — the programmer seeking to convert <m> to <km>
must write that function explicitly.

LITERAL VALUES

It’s important to note that the F# compiler takes great pains to hide some of the physical characteris-
tics of the mappings to the underlying CLR from the developer.

For example, consider the following F# code:

let s = "Hello world!"

Contrary to what the C# or Visual Basic developer assumes, this does not create a constant value,
but a property whose contents are pre-initialized to the value previously defined.

Normally, this is not a problem; this is arguably a good thing — C# and Visual Basic developers
spend far too much time thinking about the physical layout characteristics of their code, explicitly
declaring fields and properties as separate entities, when 95% of the time the two will map in a
one-to-one manner. Even given the presence of automatically generated properties in C# 3.0, the
developer must still think explicitly about physical layout — for example, should a name intended

Summary [X45

to yield a constant value be a property, a field, or a method? Should it yield a singleton object via a
static method? And so on. By removing some of these “low-level” issues from the language syntax,
F# manages to avoid much of the unnecessary debate around those decisions.

There are a few cases, most notably in C#/F# interop (see Chapter 18) and pattern matching (see
Chapter 6) where ensuring that a name/value binding is defined as a constant field value is neces-
sary; to do this, annotate the name with the Literal attribute:

[<Literal>]
let S2 = "Hello world again!"

This now forces the F# compiler to compile s2 as a constant static field in the class created for
the F# file.

SUMMARY

F# has a similar set of basic types to that of other CLR-based languages, with some slight differ-
ences in syntax and semantics, and some extended types that the traditional CLR languages (C#,
Visual Basic) don’t have directly. Many of these additional types were originally created to support
F#’s original research role as a “math/science” language but turn out to be useful in the general pro-
gramming space as well; for example, bigint will be useful in accounting applications, and both
decimal and bignum will have particular application for monetary calculations and high-precision
mathematics.

F# developers can also find the units-of-measure capabilities within the language to be helpful
anywhere real-world calculations are done — obviously mathematical calculations, such as those
routinely done in physics (either simulators or guidance-control software) can find units-of-measure
useful but so will accounting programs, particularly those that deal with a known set of currencies
or calculations dealing with time.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Control Flow

WHAT'’S IN THIS CHAPTER?

Branching with if/else
Looping with while/do

o
o
® Looping with for
o

Handling exceptions

Much, if not all, of the power of a programming language derives from its capability to branch
based according to particular criteria and values in various ways, also known as control flow
expressions. Like its sister languages on the .NET platform, F# has a wide range of power-

ful control flow constructs, including one whose power is such that it merits its own chapter,
pattern-matching, discussed in Chapter 6.

BASIC DECISIONS: IF

The simplest control flow construct to understand and come to know, of course, is the simple
branching construct based on a single Boolean decision criteria: the if construct:

let x = 12
if x = 12 then
System.Console.WriteLine("Yes, x is 12")

The then keyword is mandatory, indicating the end of the criteria test and the start of the
body of the code to execute in the case when the test passes true. For this reason, parentheses
are unnecessary around the criteria test.

Also, similar to how C# refuses to allow anything other than a Boolean expression to be used
in the comparison clause of its if statement, F# refuses to automatically convert non-bool val-
ues into bool values, so the following refuses to compile:

let x = 12

if x then
System.Console.WriteLine("Yep, x")

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

48 [XCHAPTER4 CONTROL FLOW

The issue here isn’t one of trying to prevent programmers from accidentally performing an assign-
ment (as was the case in C/C++ years ago), but that the F# language refuses to perform implicit
primitive type conversions. The solution, therefore, is to always make sure the test criterion is a
Boolean one, by adding a <> null or <> 0 as the case requires.

Also, F# uses the mathematical = (single-equals) operator to do relativity/equality comparisons, and
<> to do inequality comparisons, as opposed to the C-family traditional == and !=. This is common
practice in functional languages, largely because functional languages (including F#) don’t use = for
assignment.

For those cases where either/or kinds of decision making needs to be done, if/then also supports
an else clause, like this:

let x = 12
if x = 12 then
System.Console.WriteLine("Yes, x is 12")
else
System.Console.WriteLine("Nope, it's not 12")

Again, as discussed in Chapter 2, the code blocks corresponding to the 1f/then and else clauses are
defined by their indentation from the previous lines, regardless of the actual number of spaces from the
left margin. As a result, else must always appear on a separate line from the end of the 1 f/then code
block in front of it. But, this also means that there is no dangling else problem as seen in other lan-
guages — the else block is associated with the 1 f/then block that starts at the same level of indentation.

In some scenarios, a particular decision may not be binary in nature, but trinary or quadrinary, test-
ing multiple conditions before ultimately yielding a final value; in F#, these can be made all part of
one if/then construct by using the elif keyword to perform another conditional test and (possible)
block of code to execute:

let x = 12
if x = 12 then
System.Console.WriteLine("Yes, x is 12")
elif x = 24 then
System.Console.WriteLine("Well, now x is 24")
else
System.Console.WriteLine ("I have no clue what x is")

Any number of elif clauses can be defined, and the else clause is not required, regardless of however
many elif clauses there might be.

As discussed in Chapter 1, as with most functional languages, in F# most language constructs are
not statements but expressions, which yield values, and this is true of the if/then as well. This
means that the preceding could be rewritten to the arguably more readable form:

let x = 12
let msg = if x = 12 then "Yes, x is 12" else "Nope, not 12"
System.Console.WriteLine (msg)

In this respect, C# developers will recognize that if/then/else is actually more like the ternary
operator from C# (the so-called »: operator) than the traditional if/else from that language. In
the preceding example, the expression result from the then clause is used as the value for the
entire if/then/else expression if x is 12; and if not, then the expression result from the else

Looping: while/do [x49

clause is used. (This also holds true for the if/then/elif/else construct, regardless of the num-
ber of elif clauses used.)

This has a deeper ramification that might throw C# developers off at first. Because the entire 1 £/
then/else yields a value, it means that both sides (or in the case of 1f/then/elif/else, all sides)
of the expression must yield the same kind of value, meaning that the following will not compile:

let x = 12
let msg = 1f x = 12 then "Yes" else false
System.Console.WriteLine (msg)

This fails to compile, pointing at the false portion of the expression and saying, “This expression
has type bool but is here used with type string.” This is potentially confusing at first; the F# com-
piler is stating that the expression false has type bool (which is obvious), which is clearly at odds
with the expected return type of string, as established by the i f/then clause in front of it.

It may seem odd, at first, to consider that if/then returns a value, particularly given the preceding
examples, in which no obvious value is returned. It may help to realize that an F# if/then always
returns a value, even if that value is the functional value (), also known as unit. Executing the pre-
vious examples in F# Interactive can help drive this point home:

C:\Projects\Publications\Books\ProF#> fsi.exe

Microsoft F# Interactive, (c) Microsoft Corporation, All Rights Reserved
F# Version 1.9.6.2, compiling for .NET Framework Version v2.0.50727

Please send bug reports to fsbugs@microsoft.com
For help type #help;;

> let x = 12;;
val x : int

> if x = 12 then System.Console.WriteLine("Yep, 12")

- else System.Console.WriteLine("Nope, something else");;
Yep, 12

val it : unit = ()

>

The F# Interactive console, after executing the if/then/else expression, prints the result of that
expression, which is (), of type unit. (Remember, from Chapter 3, that unit and () are roughly
equivalent to C#’s null-and-void or Visual Basic’s Nothing-and-Nil.)

LOOPING: WHILE/DO

Branching decisions provide one form of flow control, and an obvious extension to that is the branching-
to-a-previous-execution-point style of control flow, also known as looping. F# supports a number of
different looping constructs, the simplest of which is the while construct, which executes a block of
code so long as a Boolean condition remains true:

while (System.DateTime.Now.Minute <> 0) do
System.Console.WriteLine ("Not yet the top of the hour...")

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

50

[XEHAPTER 4 CONTROL FLOW

In this particular case, so long as the current time remains any number of minutes past 0, the
Boolean condition remains true, and the body of the loop will execute. Again, as with the preced-
ing if construct, the block of code defining the body of the while loop is set off by some number of
spaces from the left margin. And, again, as with if/then conditions, the condition against which the
while tests must be explicitly a Boolean expression.

Unlike the if/then/else construct, while is a statement and thus yields no value. For this reason
(among others), while is less preferred in functional-leaning code, replaced instead by recursion over
functions, as discussed in Chapter 13.

LOOPING: FOR

Similarly, just as while/do can execute blocks of code over and over again depending on the value
of a Boolean condition each time before executing the code block, the for construct can be used to
execute a block of code based on a variable that increments somehow each time through the loop,
and tested against a Boolean criterion each time the block of code is entered:

for i = 1 to System.DateTime.Now.Hour do
System.Console.Write("Cuckoo! ")

Note that for expressions become significantly more powerful (and for that reason, will be revisited
again) in Chapter 16, when the sequence type is discussed. The for expressions of the preceding
form are known as simple for expressions in the F# Language Definition and can only be used with
integer bindings (such as i in the preceding example); any attempt to use any other kind of primitive
type or nonprimitive type in a simple for expression will result in an error.

In addition, simple for expressions have one additional form, performing decrement operations
instead of increment:

for i = 10 downto 1 do
System.Console.WriteLine("i = {0}", 1)

Officially, the downto syntax is supported solely for OCaml backward compatibility but shows no
signs of being removed from the language any time soon.

Simple for expressions are statements, not expressions, and as such yield no resulting values.
(However, the more generic and powerful for constructs over sequences discussed in Chapter 16 can
yield values, using a slightly different syntax.) Again, as with while, in more functional-leaning code,
simple for expressions are replaced with a more functional style, also discussed in Chapter 14.

EXCEPTIONS

On the .NET platform, exceptions represent a universal way of signaling and handling failure, and
the F# language is (if you’ll pardon the pun) no exception to this rule. F# can throw exceptions,
catch thrown exceptions, and define new kinds of exception types.

Handling exceptions in F# works in much the same fashion as it does across the rest of the .NET
ecosystem. A guarded block is defined and is so named because it will be guarded by either a set of
exception-catching clauses (given by the with keyword) or a general clause (given by the finally

Exceptions [X51

keyword) that will be executed regardless of how the guarded block is exited, whether by excep-
tional or regular means. Note that in what will come as a surprise to C# developers, F# does not
support both — there isno try...with...finally construct in the F# language.

try...with

In both the try...with and try...finally forms, the try keyword begins the (indented) guarded
block, and the with keyword sets off the various clauses against which the exception instance, if
an exception is thrown, is compared against to determine which clause should be executed as the
exception-handling mechanism:

J let results =
try

Available for let req = System.Net.WebRequest.Create (
download on " St "
Wrox.com Not a legitimate URL")

let resp = req.GetResponse()

let stream = resp.GetResponseStream()

let reader = new System.IO.StreamReader (stream)

let html = reader.ReadToEnd()

html

with

| :? System.UriFormatException ->
"You gave a bad URL"

| :? System.Net.WebException as webEx ->
"Some other exception: " + webEx.Message

| ex -> "We got an exception: " + ex.Message

results

Code snippet FlowControl.fs

This particular example attempts to download and return the results of an HTTP request to a URL,
but because the URL given is not a legitimate URL, the System.Net .WebRequest class will throw an
exception. The exception instance thrown is compared against the three clauses in the with section,
and the first match (in top-down order) executes the body of the clause, which is on the right side of
the -> syntax.

The different possibilities of the with section are separated by a vertical pipe (I) character, in a man-
ner deliberately reminiscent of pattern-matching (described in Chapter 6). This is a limited form of
pattern-matching, and the patterns used here will be consistent in both parts of the language.

The first two clauses in the with section (also known as the “rules” clause) are type patterns, essen-
tially testing the exception against the type given to the right of the : 2 token, in much the same way
that C# or Visual Basic do. If the exception is of that given type (or a derived type), then a match
has fired and the right side of the -> is executed. Notice that in the first form, the exception instance
itself is not needed or available; to make the instance available for use (so as to obtain information
from inside the exception instance, for example, such as its Message property), it must be named in
an as clause.

The third clause matches any exception and binds the exception instance into the name given (in
this case, ex) for use in the right side of the -> body. The named value will be of system.Exception
type, so all its members will be available for use.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

52 [XCHAPTER4 CONTROL FLOW

Additionally, a fourth type of clause, the wildcard pattern, serves the case where the exception
instance isn’t needed and the F# programmer desires a “catch-all” case. The wildcard pattern is
given by the _ character.

Notice that, as shown in the preceding example, the try...with construct is an expression,
and as such yields a value. This means that, like the if construct described earlier, the various
“branches” of the try...with must all yield a value that is type-compatible; in the preceding
case, both the body of the try block and each of the with clauses return a string (which is then
returned as the result of the whole expression).

try...finally

The try...finally form of the exception-handling behavior is similar to try. . .with, with the
difference that the finally clause has no exception instance specified, because it will be executed
regardless of how the guarded block is exited. Note that, like its sister language C#, the finally
clause does not handle the exception if one is thrown from within the guarded block, but simply
executes and then proceeds to allow the exception to circulate further back up the call stack.

let results =
try
(12 / 0)
finally
System.Console.WriteLine("In finally block")

Again, like the try...with form, the try...finally form is an expression, meaning it yields a
return value; however, because the finally clause itself isn’t an actual result but merely a way in
which to provide cleanup, “returning” a value out of the finally clause will have no effect on the
code. In other words, this version of the previous example

let results =
try
(12 / 0)
finally
System.Console.WriteLine("In finally block")
5

will not yield the value 5 but will still circulate the exception to higher stack frames because the
exception has not yet been caught.

It is also possible to rethrow an exception that has been thrown and caught in a catch block, using
rethrow:.

As with all NET languages, rethrowing an exception causes the runtime to immediately begin
looking for catch handlers above the current stack frame — there is no difference between a thrown
exception and a rethrown exception.

Raising and Throwing Exceptions

Raising an exception in F# is accomplished via raise, as demonstrated here:

try

raise (new System.Exception("I don't wanna!")
finally

System.Console.WriteLine("In finally block")

Summary [X53

Raising an exception in F# is effectively the same behavior as using throw in C# or Throw in Visual
Basic, constructing an exception instance (capturing a snapshot of the thread stack at the time)
and immediately beginning the stack-frame-exiting to find an appropriate exception handler.

Defining New Exception Types

Although the entire range of .NET exception types are available to the F# programmer for rais-
ing, in general it is considered bad form to throw an exception type that isn’t particular to that

library; in other words, when designing a new component, F# programmers should take care to
define exception types that are specific to that component, so that programmers catching excep-
tions can discriminate exceptions thrown by different components and handle each accordingly.

F# provides two mechanisms by which new exception types can be defined: One that provides maxi-
mum compatibility with the rest of the .NET ecosystem, and one that requires a near-trivial amount
of work. The first, which is to define a new class type, in a manner reminiscent of C# or Visual
Basic, is discussed in more detail in Chapter 8: simply create a new class that derives (either directly
or indirectly) from System.Exception.

The second involves the F# exception keyword, and at its simplest, defines an exception type that
inherits from the F# base exception class exn:

exception MyException

The MyException type, defined like this, defines a new .NET class type that looks like the follow-
ing, if it were to be written in C#:

public class MyExceptionException : Exception

{

public MyExceptionException() { ... }
public int CompareTo (Exception ex) { ... }
public int CompareTo (object o) { ... }
public bool Equals (Exception ex) { ... }
public bool Equals(object o) { ... }
public int GetHashCode() { ... }

public int GetStructuralHashCode() { ... }

Note the name of the class — the F# compiler has silently appended the suffix Exception to the name
of the exception type defined in F#, because it is a .NET convention that all exception type names be
so named. Inside of F#, this will have no effect, but when calling F# code from other languages, it will
need to be taken into account.

SUMMARY

The control handling primitives of F# are, for the most part, identical to control primitives of other
languages, with the difference that functions (described in Chapter 13) will often step in to take over
some of the flow-control behaviors C# and Visual Basic programmers are used to using other lan-
guage constructs to handle. For example, much of the imperative looping (while/do and the simple
for expression) will be instead written to use recursion and pattern-matching. Much of the flow-
control constructs in F# can be rewritten entirely using pattern-matching constructs, as discussed in
more detail in Chapter 6.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Composite Types

WHAT'’S IN THIS CHAPTER?

Understanding option types
Working with tuples

o
o
® Using arrays, lists and sequences
o

Creating and using maps and sets

Like many other .NET languages, F# provides not only a set of primitive types for describing
the basic atoms of data (strings, integers, and so on), but also a set of types for gathering those
atoms into larger structures. These composite types are also built into the language, and in
some cases directly mirror capabilities found within the .NET Base Class Library or the CLR.

In many cases, F# developers will find that these composite types can serve where normally
developers in other languages would have to create a complete class type. For example, as with
many functional languages, F# developers can find that a collection of functions plus a tuple
type instance or list instance can be sufficient to model the problem domain, without having
to create a standalone class to represent the data. Much of the F# library is built in precisely
this manner, wrapped into a module (see Chapter 11 for lexical scoping).

OPTION TYPES

The simplest composite type to understand is the option type, which is effectively an either/
or type similar in some ways to the Boolean data type, but with an entirely different purpose
and use.

Options are similar to Booleans in that there are only two acceptable values for a given option,
None, indicating an absence of value, and some, which indicates a value. As can be easily
inferred from the description here, options are used as a replacement for the null-checking

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

56

[XEHAPTER5 COMPOSITE TYPES

that object-oriented languages traditionally use to determine the difference between “nothing” and
“something™:

let nothing : string option = None

let something : string option = Some("Ted Neward")
System.Console.WriteLine("nothing = {0}", nothing)
System.Console.WriteLine ("something = {0}", something.Value)

As is demonstrated here, options are tied to another type, the actual type “carried” as part of the
Some value, which in this case, is a string. (The option type is a generic type, which should be
familiar to .NET developers; generics in F# are discussed in Chapter 10). F# allows us two differ-
ent ways to specify an option type, one using the T option syntax (as shown here), or to use a more
NET/BCL-like syntax, which may seem more comfortable to the C# crowd:

let nothing : Option<string> = None

let something : Option<string> = Some ("Ted Neward")
System.Console.WriteLine("nothing = {0}", nothing)
System.Console.WriteLine ("something = {0}", something.Value)

It’s important to note that the two syntaxes are entirely equivalent and produce exactly the same IL;
the former is preferred among functional-language programmers, but the latter may be more com-
fortable for object-oriented developers until the functional style becomes more intuitive. (We’ll see
similar kinds of syntax when looking at list declarations later in this chapter.)

The option type serves as a simple type designed to differentiate between (as its name implies) “some”
data and “no” data. Pragmatically, option acts as a measure to avoid developers having to worry
about null-object values and the inevitable Nul1ReferenceException that gets thrown when forget-
ting to test for null before dereferencing the possibly-null value. Because None is an object instance just
as any other object is,” None is perfectly acceptable as a target for comparisons and method calls:

let possiblevalue =
if (System.DateTime.Now.Millisecond % 2) = 0 then
None
else
Some ("Have a happy day!")
if possibleValue.IsSome then
System.Console.WriteLine("Ah, we got a good value. Good!")
System.Console.WriteLine (possibleValue.Value)

This makes the use of option vastly superior to the use of null and goes a long way toward remov-
ing a significant source of exceptions thrown at runtime. (Consider this a prescriptive piece of
advice: Prefer option to null as a return type indicating a lack of data or response.)

As is shown in the preceding code, testing an option value for Some-ness can be done several differ-
ent ways. The option type has several properties defined on it directly, such as the TsSome property
already shown, which returns true if the underlying option is a Some of some value, just as TsNone
returns true if the underlying option instance is set to None. Accessing the value of a Some is done
through the value property, but it is important to note that for None, value will return null, so only
access it when IsSome is true.

*Technically, this isn’t true — the None value is, in truth, null under the covers (for optimization reasons), but
many of the F# APIs are written specifically to handle the null-ness silently. This lends the idea that None is a
“real” object value.

Option Types [X57

Any of the following code, when invoked, will throw an exception, so careless use of None can still
create NullReferenceExceptions:

let nothing : string option = None

if nothing.Equals (None) then
System.Console.WriteLine ("None.Equals (None) ")

System.Console.WriteLine (nothing.GetHashCode())

System.Console.WriteLine (nothing.ToString())

F# does this for efficiency and performance reasons, so although the compiler does attempt to make
None appear as if it is a legitimate value, be careful when trying to peek too far under the hood.
More often than not, using IsSome (or relying on the functions described below) is the preferred
approach to test for Some-ness or None-ness.

Option Functions

F# provides a suite of functions in the option module that also provide access to the members of
the option type, and some enhanced capabilities over using the properties directly. For example,
Option.iter is a method that executes a passed-in function against an Option instance, but only if
that option instance is a Some rather than a None (in which case it does nothing):

let possibleValue =

if

else

(System.DateTime.Now.Millisecond % 2) = 0 then

None

Some ("Have a happy day!")

Option.iter (fun o -> System.Console.WriteLine(o.ToString())

possiblevalue

Following are some of the option module methods:

NAME
bind fn o
count o

exists fn o

forall fn o

get o

iter fn o

isNone o

EFFECT

Executes the function £n against the option instance o, returning a value, but only
if o is a Some

Returns 0 if o is None, 1if o is Some

Executes the function £n against the option instance o, returning true or false, but
only if o is a Some

Executes the function £n against the option instance o, passing o.value into fn,
expecting a true or false value back, but only if o is a Some

Returns the value in the option (if o is a Some), or else throws an exception (if o is
a None)

Executes the function f£n against the option instance o, passing o.value into fn,
but only if o is a Some

Returns true if o is None, false if 0 is Some

continues

Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

58 [XCHAPTERS5 COMPOSITE TYPES

(continued)

NAME EFFECT
isSome o Returns false if 0 is None, true if 0 is Some
toArray o Converts the Option instance o into an array of size O or 1, depending on whether

0 is Some or None

toList o Converts the Option instance o into a list of length O or 1, depending on whether o
iS Some or None

Observant readers will notice that many of these methods make more sense on collection classes,
and much of the option API is designed around the concept that an option is a single-slot collec-
tion. This also creates a consistent API when working with other composite types (such as Lists

or Arrays).

TUPLES

Tuples group two or more unnamed values into an ordered collection of values described as a
single value:

let myName = ("Ted", "Neward")
let myDescription = ("Ted", "Neward", 38, 98053)

Tuples are described by comma-separated values in between parentheses, so in the preceding snip-
pet, the two tuples listed are of string and string type, and of string and string and int
and int or more accurately, (string * string) and (string * string * int * int) in the F#
syntax. These are two separate and unique types, even if they have no formal name assigned to them
so that any attempt to use a (string * string) where a (string * string * int * int) is
expected will fail.

Any tuple whose list of types — in both number and order — is equivalent to another is thus consid-
ered to be of the same type. Thus, in the following;:

let myName = ("Ted", "Neward")
let herName = ("Sarah", "Michelle", "Gellar")

the two values, myName and herName, are of entirely separate types and therefore incompatible,

whereas in:
let myName = ("Ted", "Neward")
let cityState = ("Phoenix", "AZ")

the values myName and cityState, despite representing obviously different intended values, are both
(string * string), and therefore are type-equivalent. Formally, this kind of equivalence is known
as structural equivalence, meaning that the two values are equal in terms of their contents, even if
they may or may not be of the same type.* Thus, when the following is run:

*In truth, this isn’t a precise definition of the term, but it suffices for the discussion here.

Tuples [X59

System.Console.WriteLine ("myName = herName? {0}",
myName.GetType () .Equals (herName.GetType ()))
System.Console.WriteLine ("myName = cityState? {0}",

myName.GetType () .Equals (cityState.GetType()))

the resulting printed values will be False and True.

Accessing the individual values inside the tuple is typically done through one of three methods.
First, the F# library provides functions (fst and snd) that return individual elements from inside
the tuple. Second, pattern-matching can be used to extract elements from within the tuple (and is
described in Chapter 6), or third, a new set of individual values can be bound based on values from
inside the tuple.

The first approach uses F# library functions st and snd (“first” and “second”) to extract either the
first or second element from inside the tuple value:

let me = ("Ted", "Neward")

let firstName = fst me

let lastName = snd me

System.Console.WriteLine("Hello, {0} {1}", firstName, lastName)

Each returns only that particular element, and restrictions on the fst and snd functions require that
the tuple be a pair (2-element tuple). For this reason, any triple (3-element tuple) or tuple with ele-
ments beyond that will not be accessible via this approach.

The third approach uses new values to pull elements out of the tuple, as in the following:

let me = ("Ted", "Neward", 38, "Redmond", "WA")
let (firstName, lastName, age, city, state) = me
System.Console.WriteLine("Hello, {0} {1}", firstName, lastName)

This is actually a short form of pattern-matching (discussed in Chapter 6) so the use of the wildcard
(_) to ignore certain elements of the tuple also works:

let me = ("Ted", "Neward", 38, "Redmond", "WA")

let (firstName, _, _, city, _) = me

System.Console.WriteLine("Hello, {0}, how's {1}",
firstName, city)

Note that any sort of name-binding can be used, so if we have an array (see the next section for more
on arrays) of tuples that we need to extract values from individually, we can do so using for again:

let people = [|
("Ted", "Neward", 38, "Redmond", "WA")

("Katie", "Ellison", 30, "Seattle", "WA")
("Mark", "Richards", 45, "Boston", "MA")
("Rachel", "Reese", 27, "Phoenix", "AZ")
("Ken", "Sipe", 43, "St Louis", "MO")

(

"Naomi", "Wilson", 35, "Seattle", "WA")
|1
for (firstName, lastName, _, _, _) in people do
System.Console.WriteLine("{0} {1}", firstName, lastName)

Where other .NET languages tend to use custom value types (those types that inherit from System
.ValueType, also known as structs in C# or as Structures in Visual Basic), F# encourages the use

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

60 [XCHAPTERS5 COMPOSITE TYPES

of tuples instead. Note that it is still possible to create value types in F# (see Chapter 7 for details), but
that should be reserved for the specific case where a new kind of “primitive type” needs to be
created, rather than simply creating a “bundle of values,” which is the province of the tuple type.

ARRAYS

Arrays, as most .NET developers know, are homogenous collections that are laid out sequentially

in memory, providing fast random-access capabilities. Because arrays of objects are just arrays of
mutable references to objects, however, arrays are discouraged as constructs for use in functional
programming. As a fully vested member of the CLR platform, the F# language provides a complete
set of functionality to arrays that is similar to that for lists and other collection types, but aside from
interoperability with the underlying CLR platform and assemblies written in other languages, F#
code “in the wild” rarely uses it. For new F# programmers, the general recommendation is to reach
for a list (seen next) rather than an array.

Array Construction

The simplest array to understand is the empty array, denoted by an empty pair of array brackets:

let emptyArray = [| |]

Arrays can also be initialized with contents by semicolon-separating the values, as in:
let arrayOflIntegers = [| 1; 2; 3; 4; |]
or by separating the contents onto their own line:

let arrayOfStrings = []
"Fred"
"Wilma"
"Barney"
"Betty"
|1

Either style works equally well, leaving the choice to be based primarily on which one reads more
clearly to the developers involved.

If the array is to contain all the same value, the create function from the Array module can be used
to construct an array:

let arrayOfZeroes = Array.create 10 0
let arrayOfTeds = Array.create 10 "Ted"

The array.create function takes an initial size and an initial value as parameters and constructs
the array accordingly.

Arrays can also be initialized by range expressions, in which a starting and ending value are pro-
vided to the language, and it infers the rest, initializing the list with starting and ending values and
the contents in between:

let arrayOfiIntegers = [| 1 .. 10 |] // [1; 2; 3; ... 10; 1]

Arrays [x61

The range expression can also have a “step” to it, an increment value that will be added to the start-
ing value repeatedly so long as the value produced is smaller or equal to the ending value:

let arrayOfEvenIntegers = [| 0 .. 2 .. 10 |]
/7007 27 4; ... 105 1]

The step can be any numeric step, and the range expression can also support floating-point values:

let arrayOfFloatsToTen = [0.0 .. 0.5 .. 10.0]

@ Note that as of this release, F# will continue to support floating-point range
expressions, but a warning will be generated because the language designers
reserve the right to remove that functionality in a later release.

For those cases where the “step” form of a range expression isn’t quite powerful enough to create
the array desired, such as creating an array of the squares of 1 through 10 (1, 4, 9, 16, and so on),
you could construct an array using the aArray.create function and then fill the values with the
desired squares using a looping construct:

let mutableArray = Array.create 10 0

for i = 0 to 9 do
mutableArray.[1] <- i*i

Note that in F#, array indexing begins at 0, as God intended.

Although this is a “traditional” way to accomplish this, F# provides a better way, by using the loop-
ing construct directly inside of the array initializer:

let arrayBuiltList = [for 1 in 1 .. 10 -> 1 * 1]

In this particular case, we use a second form of the “for” construct, a sequence expression,
described later in this chapter in the section on sequences. The net result is that the loop is effec-
tively expanded “inside” the initializer, each result creating a new value initialized into the array. In
this case, the result is an array of int, 10 cells in size, containing 1, 4, 9, 16, and so on.

The F# syntax for describing the type of the array is, as with option, to append “array” to the
end of the type descriptor so that an array of integers in F# is described as int array. This can
be important in certain scenarios, where the array type must be explicitly described, such as when
constructing an array of objects:

let (arrayOfObjects : obj array) = []
(1 :> obj)

("two" :> obj)

(3.0 :> obj)

|]

In this case, not only does the array itself need to be explicitly described as an obj array (where
obj is the synonym for System.0bject in F#), but the individual elements must also be explicitly
upcast as obj types.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

62 [XCHAPTERS5 COMPOSITE TYPES

Array Access

Accessing the members of the array, as shown earlier in the discussion of looping through the list to
initialize its members, is done through the [] method on the array:

let people = []
("Ted", "Neward", 38, "Redmond", "WA")
"Mark", "Richards", 45, "Boston", "MA")

(

("Rachel", "Appel", 27, "Pittsburgh", "PA")
("Neal", "Ford", 43, "Atlanta", "GA")
("Naomi", "Wilson", 35, "Seattle", "WA")

]
let thirdPerson = people.[2]
Note that the “dot” in the usage here is required — the F# language wants to be consistent, and so
treats the [] as a method invocation, to keep it in line with the other methods, such as those inher-
ited from System.Array, that are accessible. (Fortunately, the F# compiler will “do the right thing”
with this expression, turning it into a single-opcode expression when emitting the bytecode, so no
performance is lost by doing so.)

Modifying the contents of the array is as easy as putting the access expression on the left side of the
assignment operator:

// Happy Birthday, Mark!
people.[2] <- ("Mark", "Richards", 46, "Boston", "MA")

As with any use of arrays on the .NET platform, this modifies the array by storing a new reference
to an object and has no effect on the object originally referenced.

Array Functions

The array module provides a large number of methods that can operate on arrays and provides
a much richer set of functionality for arrays than that provided by the BCL. Using them typically
requires nothing more than to provide the array instance on which to operate and any parameters
needed by the operation (such as the function to apply to each of the array elements). For exam-
ple, to iterate over an array and display its contents, the C# or Visual Basic programmer may be
tempted to write the iteration loop manually:

let array = Array.create 10 0

for i = 0 to array.Length - 1 do
System.Console.WriteLine (array.[1])

Doing this requires the developer to extract the element out of the array using the integer index
and can be awkward in certain situations. Like C# and Visual Basic, F# permits a form of for to
handle the details of iteration internally and simply provide the element to the body of the loop for
processing:

for p in array do
System.Console.WriteLine (p)

However, functional programmers find this more easily done by passing a (typically anonymous)
function containing the “operation” code (the body of the loop, in this case) directly to the

Arrays [X63

Array.iter function, which iterates over the array, extracts the current element, and passes it in to
the “operation” function for processing:

Array.iter (fun it -> System.Console.WriteLine(it.ToString()))
array

It may seem odd to the traditional O-O developer to do this at first, but doing so actually creates
more opportunities for reusability and easier extension. To understand why, imagine that the array
is a large one, consisting of thousands of elements. To iterate over each in a serial fashion is a huge
performance hit, particularly when each element is being processed independently and therefore
could be processed on its own thread (and depending on the underlying hardware, CPU core). But to
write the code that spins up threads (or borrows them from the system thread pool) can be awkward
to write and hard to debug, and certainly won’t be something we want to write twice.

Fortunately, if the parallel-iteration code is written once and placed into a function inside a module
(calling it ParallelArray, perhaps), we can modify the previous example to take advantage of it,
yielding a (fictitious) example of:

ParallelArray.iter
(fun it -> System.Console.WriteLine(it.ToString()))
array

This is a powerful form of reusability and is supported in .NET 4 using Array.Parallel.

Some of the functions offered by the Array module are given next, grouped loosely by category.

Array Meta Functions

These functions (in a general sort of way) operate on the array itself, rather than individual elements
within the array, to do things such as create a new array, concatenate two arrays together, and so
on. These are documented in the F# documentation, so look there for more details.

append arl ar2 Creates a new array containing the elements of arl and ar2 (in that order)

average ar Assuming the array type supports three members (+, DivideByInt and
get_Zero), calculates the average of the elements in ar

averageBy fn ar Assuming the array type supports three members (+, DivideByInt and
get_Zero), calculates the average of the elements by calling £n on each ele-
ment of ar

blit arl stl ar2 Reads len elements from ar1 starting at i and copies them to ar2 starting

st2 len atst2

concat seq Creates an array consisting of all the elements of the given sequence of
arrays seq

copy src Creates a copy of the array src

create sz init Creates a new array of size sz with an initial value (and type) of init

empty<'t> Returns an empty array of the given type t

continues

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

64

[XEHAPTER5 COMPOSITE TYPES

(continued)

fill ar st len

val
get ar 1

init sz gen

isEmpty ar
length ar
ofList 1lst
ofSeq seq

partition predFn

ar
rev ar
set ar 1 val

sub ar st len

toList ar
toSeq ar

unzip ap
unzip3 ap
zip arl ar2

zip3 arl ar2 ar3

Fills the array ar with Len number of val values, starting from st

Returns the i’th element from the array ar; synonymous with ar.[i]

Creates an array of size sz and uses the gen function to compute the initial
contents

Returns true if the array ar is empty

Returns the length of ar; synonymous with ar.Length
Converts the list 1st to an array

Converts the sequence seqg to an array

Splits ar into two arrays (returned as a tuple), containing the elements for
which predFn returns true and false, respectively

Returns a new array containing the contents of ar in reversed order
Sets the i’th element in ar to val; synonymous with ar.[i] <- val

Creates a new array containing the subrange from ar starting at st for 1len
elements

Converts the array ar to a list
Converts the array ar to a sequence

Converts the array of pairs ap into two (or three) separate arrays, returned as
a tuple

Combines the elements of ar1 and ar2 (and ar3) into an array of pairs (or
triplets), where the 0’th elements of arl and ar2 will be paired up, and so on

Array Application Operations

choose fn ar

exists fn ar

filter fn ar

find fn ar

These functions operate on the contents of the array, typically by taking a function as a parameter and
using it against each of the elements in the array to produce a result, either a single value or another array.

Applies £n to each elementin ar, and if £n returns Some (x) for that element,
includes it in the returned array

Returns true if any of the elements in ar, when passed to fn, return true

Returns an array consisting of the elements in ar that, when passed in to fn,
causes it to return true

Returns the first element in ar that returns true when passed to fn; if no such ele-
ment exists in ar, throws an exception

Lists [x65

findIndex fn
ar

fold fn s ar

foldBack fn

s ar
forall fn ar
iter fn ar

iteri fn ar

map fn ar

mapi fn ar

reduce fn ar

reduceBack
fn ar

try_find fn

ar

try_findindex
fn ar

try_findin-

Returns the index of the first element in ar that returns true when passed to fn; if
no such element exists, throws an exception

Applies £n to each element in ar, passing s in with the element, allowing s to act
as an accumulator across all the calls; starts with the 0’th element in ar

Applies £n to each element in ar, passing s in with the element, allowing s to act
as an accumulator across all the calls; starts with the last (n’th) elementin ar

Returns true if all of the elements in ar, when passed to fn, returns true
Applies £n to each element in ar; fn is expected to return unit

Applies £n to each element in ar; £n receives both the element and its index and
is expected to return unit

Applies fn to each element in ar; fn is expected to yield a value, which is put
into an array and returned

Applies £n to each element in ar; £n receives both the element and its index and
is expected to yield a value, which is put into an array and returned

Applies £n to each element in ar; £n receives both the element and its next ele-
ment, starting from the 0’th element

Applies fn to each element in ar; £n receives both the element and its previous
element, starting from the last (n’th) element

Returns the first element in ar for which £n returns true, or None if no such ele-
ment exists

Returns the index of the first element in ar for which £n returns true, or None if no
such element exists

Returns the index of the first element in ar for which £n returns true, or None if no

dexi fn ar such element exists; £n receives both the element and its index as parameters

There are some additional functions in the Array module, but many of these are just additionally varied ver-
sions of the these functions (iter2, for example, is just a form of iter that can operate on two arrays simulta-
neously), or “bake in” the function to apply to each of the elements (such as the max and min functions, which
do as their names imply).

LISTS

Lists are an ordered collection of a single type and, like tuples, form a major backbone of func-
tional programming. Internally, lists are singly linked lists, meaning that list construction and
extraction is extremely fast and space-efficient. However, random access to elements in the

list will be far slower than arrays; fortunately, most functional programming prefers recur-
sion over iteration, and recursion works well to extract elements one at a time out of the list for
processing.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

66 [XCHAPTERS5 COMPOSITE TYPES

List Construction

The simplest list to understand is the empty list, denoted by an empty pair of brackets:

let emptyList = []

Lists that have something inside of them are vastly more interesting, however, and can be initialized
by including values (again, all of the same type) in between the brackets, separated either by semi-

colons or carriage—returns:

let listOfIntegers

=[1; 27 37 4; 1]

let 1listOfStrings = [

"Fred"
"Wilma"
"Barney"
"Betty"
1

As with arrays, either style works equally well — although the former is preferred for short or easily
initialized lists, the latter is useful when each element in the list takes up more space, either because
it needs to be accompanied by a comment describing its contents, or for scenarios where each ele-

ment’s initialization takes up m

let listOfStrings =

ore than a few characters:

[

"Fred" // Flintstone
"Wilma" // Flintstone
"Barney" // Rubble
"Betty" // Rubble
]

let listOfPeopleTuples = [
("Ted", "Neward", 38, "Redmond", "WA")
("Katie", "Ellison", 30, "Seattle", "WA")
("Mark", "Richards", 45, "Boston", "MA")
("Rachel", "Reese", 27, "Phoenix", "AZ")
("Ken", "Sipe", 43, "St Louis", "MO")
("Naomi", "Wilson", 35, "Seattle", "WA")
1

Like arrays, lists can also be initialized by range expressions:

let listOfIntegersToTen =
let listOfEvenIntsToTen =

/7005 2; 4;

let listOfFloatsToTen = [

[1 01 // 0 1;

[0 2 .. 10]
10; 1]

0.0 .. 0.5 10.0 1]

2; 3; 10; 1

It is also possible to take an existing list and prepend new elements to it using the :: (pronounced
“cons”) operator, which takes an element on the left side and a list on the right side and produces a

new list out of the results:

let consedList = 1

2 13 :: 4 [1]

Two things are important to note about consedList: First, notice that the right-most element
is the empty list. This is because the cons operator must have a list as its right-most argument,
or the operation will fail. This also leads to the second point, which is that the cons operator is

Lists [x67

right-associative, meaning that the preceding code, written in a more explicit (and tedious) form,

looks like
let consedList =1 :: (2 :: (3 :: (4 :: [1)))

which illustrates that in each case, the right item to the operator will be a list. Note that this also
implies that for each operation, a new list object will be created and handed back, until the final
list object created will be bound to consedList. In this respect, lists behave similar to how .NET
System.String objects behave, for many of the same reasons.

Developers with an eye on performance-sensitive code may find that last paragraph disconcerting. The
implication that each cons operation requires the contents of the list to be copied over into a new list, only
to in turn be copied again into the new list after that, and so on, smacks of a horrible waste of effort.

Fear not. Two things make this situation more palatable. First, the list is a singly linked list, meaning
that each value is stored in its own node. Second, because lists are immutable, they can share nodes
across lists, thus reducing the total cost of “copying” the list. (It’s worth noting that this “sharing” of
nodes could never be possible in a mutable list, reinforcing the intrinsic usefulness of immutable data
structures, making this use of immutable lists often much faster than working with mutable lists.)

For those cases where the “step” form of a range expression isn’t quite powerful enough to create the
list desired, such as creating a list of the squares of 1 through 10 (1, 4, 9, 16, and so on), you could use
a looping construct (from Chapter 4) to build up a list, something along the lines of the following;:

let mutable forBuiltList = []

for i = 1 to 10 do
forBuiltList <- (i * i) :: forBuiltList

but this feels horribly awkward, for a variety of reasons. First, because lists are immutable, concate-
nating against forBuiltList will produce only a new list, not modify the original, and thus needs to
be captured into a mutable local variable (using the mutable keyword, described in Chapter 8) across
each step in the loop. Second, because forBuiltList is now a mutable reference, any developer can
come along and modify the contents after its initial construction, creating a potential logic hole.

Fortunately, as with arrays, the F# language permits the use of a sequence expression inside of the
list initializer:
let forBuiltList = [for i in 1 .. 10 -> 1 * i]

As with the array case, the result is a list of int containing the squares of the values 1 through 10.

y If you are diligently typing in the examples in as you read this book, you might
notice that the two lists aren’t exactly the same. Although they’re both lists of
int containing the squares of 1 through 10, the first list is a list of squares count-
ing down from 10, and the second is a list counting up from 1. This is because

in the second case the elements are automatically appended to the list, whereas
in the first case they’re manually prepended. This just reinforces the idea that the
second syntax is the preferential one to use, since it will more likely be what the
developer really intended.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

68 [XCHAPTERS5 COMPOSITE TYPES

For those situations where a developer wants to smash two lists together, F# provides the @ (concat-
enation) operator, which takes two lists and produces a new list out of the combined contents:

let concattedList = listOfIntegers @ consedList
/001 27 35 4 1 25 35 451

In each of these cases, the resulting list is a list of a single type, whether int, string or the tuple
type (string * string * int * string * string).

Because lists are so common in F# code, the language provides a particular type syntax for describ-
ing lists, that of appending the list element type with the suffix “list.” Thus, the respective types of
the lists viewed so far would be described by F# as:

listOfIntegers : int list

listOfStrings : string list

listOfPeopleTuples : (string*string*int*string*string) list
listOfFloatsToTen : float list

consedList : int list

forBuiltList : int list

concattedList : int list

In certain scenarios, it will be helpful (or necessary) to create a list that contains more than one
type, but trying the naive approach fails miserably:

let notWorkingList = [1; "2"; 3.0;]

This is because the compiler looks at the first element of the list, an int, and assumes that the rest of
the list should also be int values, which the successive two values clearly are not.

For those situations demanding a “list of everything,” the F# language allows for an “object list,”
though the syntax will often require a type descriptor to force the compiler to see it as such:

let (objectList : obj list) = [
(1 :> obj)

("2" :> obj)

(3.0 :> obj)

]

The “upcast” operators are required here for the F# compiler to see them in their obj form (instead
of assuming them, as it would naturally, to be literals of their declared type — int, string, and
float, respectively), and the parentheses around the upcast is necessary to see it all as one expres-
sion. (The awkwardness here is arguably a deliberate decision, because F# would much rather pro-
grammers figure out more strongly typed ways of interacting with lists.)

List Access

When initialized, elements of a list can be accessed using a variety of approaches.

The first approach is to use the Head and Tail properties on the list instance itself, which returns the
first object in the list and the remainder of the list (as a list), respectively:
let people = [

("Ted", "Neward", 38)
("Mark", "Richards", 45)

Lists [x69

("Naomi", "Wilson", 38)

("Kel’l", "Sipe", 43)
1
let peopleHead = people.Head
System.Console.WriteLine (peopleHead)

In the case of a single-element list, Head will return that element, and Tail will return an empty

list. Unlike the array, however, the list provides no efficient random-access operation — lists can
only be accessed as head and tail elements. However, should the .NET developer desire access to the
nth item of a list, it can be obtained via the “Item” indexer property defined on the List<> class.
However, doing so has two drawbacks. One, because the list is a singly linked list, accessing ele-
ments further from the head of the list will be increasingly slower. Two, doing so will potentially
create confusion in those who read the code, because functional languages have not traditionally

had arbitrary access to elements of the list. As a result, it’s best to consider this method and its per-
formance implications carefully before using.

The Head and Tail properties provide effectively the same result as the List module methods* head
and tail, respectively:

let people = [
("Ted", "Neward", 38)
("Mark", "Richards", 45)
("Naomi", "Wilson", 38)
("Ken", "Sipe", 43)
1
let firstPerson = List.head people
System.Console.WriteLine (firstPerson)

Which of these two styles F# programmers should use depends somewhat on programmer aesthet-
ics and comfort. Having said that, however, the programmer seeking to understand and master

functional style will prefer the use of the 1.ist methods because those can be partially applied; see
Chapter 13 for more details.

Like arrays, lists can also be extracted through the use of variable bindings, but this is less common
and potentially dangerous; for example, the following code will compile and run, but generates a
warning that not all possible matches are accounted for. (This is discussed further in Chapter 6.)
let people = [
("Ted", "Neward", 38)
("Mark", "Richards", 45)
("Naomi", "Wilson", 38)
("Ken", "Sipe", 43)
]
let (personOne :: rest) = people
System.Console.WriteLine (personOne)

As a result, this form is less used, in favor of recursively using Head/List.head and Tail/List.tail instead.

Lists can also provide access to the n-th item in the list using the . [] method (the Ttem property at
the IL level) or the List.nth function, but this is rarely done in F# code, because each such access

*Note that in previous releases of F#, these were known as hd and t1, and lots of F# code and samples still
use them as such.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

70 [XCHAPTERS5 COMPOSITE TYPES

will require traversing the linked list from the beginning until the n-th item is found (O(#n) per-
formance). Given how trivially easy it is to convert between arrays and lists, using the toArray or
toList functions found on each, in general it will be preferable to convert the list to an array to
do random access.

List Methods

The nist module (see Chapter 11 for details on modules and namespaces) provides a large number
of functions for use with lists, even more than those provided for Array. As with the Array mod-
ule functions, the List module functions frequently take a function as a parameter to apply to the
various elements within the List, and many of the same functions appear in both modules under
the same names and declarations so as to maintain consistency.

Some of the List functions appear next, loosely grouped by category.

List Meta Functions

These functions, like those listed for the array module, manipulate lists rather than the contents
within them. In general, these functions create or copy lists, or do something to the list as a whole,
in much the same way that the functions described in the Array section do. There is a great deal
of duplication here, so that the F# programmer familiar with how an operation works on an array
already knows how an operation will work on a list, and vice versa.

append lstl 1st2 Creates a new list containing the elements of 1st1 and 1st2 (in that order)

concat seq Creates a list consisting of all the elements of the given sequence of lists seq
empty<'t> Returns an empty list of the given type t
head 1st Returns the head (first element) of 1st; synonymous with 1st.Head; unlike

t1, hd always returns a single object, not a list

init sz gen Creates a list of size sz,using the gen function sz times to compute the initial
contents

isEmpty lst Returns true if the list 1st is empty

length 1st Returns the length of 1st; synonymous with 1st.Length

nth 1st 1 Returns the i’th element from the list 1st; synonymous with 1st.[/]

ofArray ar Converts the array ar into a list

ofSeq seq Converts the sequence seq to a list

partition predFn Splits /st into two lists (returned as a tuple), containing the elements for which

lst predFn returns true and false, respectively
rev lst Returns a new list containing the contents of 1st in reversed order
tail 1st Returns the tail (remainder) of 1st; synonymous with 1st.Tail; unlike hd, t1

always returns a list, even if it is of zero or one elements in length

Lists [X71

toArray lst Converts the list 1st to an array

tosSeq lst Converts the list 1st to a sequence
unzip 1p Converts the list of pairs (or triplets) 1p into two (or three) separate lists,
unzip3 1p returned as a tuple

zip lstl 1st2
zip3 1lstl 1st2
1st3

Combines the elements of 1st1 and 1st2 (and 1st3) into a list of pairs (or
triplets), where the 0’th elements of 1st1 and 1st2 (and 1st3) will be paired
up (or tripled up), and so on

List Application Operations

These functions operate on the contents of the list, typically by taking a function as a parameter
and invoking it once for each of the elements, passing that element in as a parameter (also known as
“applying” the function to each of the elements), to produce a result, either a single value or with all
the results grouped into another list.

choose fn 1st

exists fn 1st

filter fn 1lst

find fn 1lst

findIndex fn

1st

first fn 1lst

fold fn s 1lst

foldBack fn s
1st

forall fn 1lst

iter fn 1lst

iteri fn 1st

Applies £n to each element in 1st, and if £n returns Some (x) for that element,
includes it in the returned list

Returns true if any of the elements in 1st, when passed to fn, returns true

Returns a list consisting of the elements in 1st that, when passed in to fn,
causes it to return true

Returns the first element in 1st that returns true when passed to £n; if no such
element exists in 1st, throws an exception

Returns the index of the first element in 1st that returns true when passed to
fn; if no such element exists, throws an exception

Applies £n to each of the elements in 1st, returning as soon as fn finds
Some (x) for an element; if none are found, it returns None

Applies £n to each element in 1st, passing s in with the element, allowing s to
act as an accumulator across all of the calls; starts with the 0’th element in 1st

Applies fn to each element in 1st, passing s in with the element, allowing s to
act as an accumulator across all of the calls; starts with the last (n’th) element
inlst

Returns true if all of the elements in 1st, when passed to fn, returns true
Applies fn to each element in 1st; £n is expected to return unit

Applies £n to each element in 1st; £n receives both the element and its index
and is expected to return unit

continues

Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

72 [XCHAPTERS5 COMPOSITE TYPES

(continued)

map fn lst Applies £n to each element in 1st; £n is expected to yield a value, which is put
into a list and returned

mapi fn 1st Applies fn to each element in 1st; £n receives both the element and its index
and is expected to yield a value, which is put into a list and returned

map_concat fn Applies fn to each element in 1st; £n receives both the element and its index
1st and is expected to yield a value, which is put into a list and returned
reduce fn lst Applies £n to each element in 1st; £n receives both the element and its next

element, starting from the 0’th element

reduceBack fn Applies £n to each element in 1st; fn receives both the element and its previ-
lst ous element, starting from the last (n’'th) element

tryFind fn Returns the first element in 1st for which £n returns true, or None if no such
lst element exists

tryFindIndex Returns the index of the first element in 1st for which £n returns true, or None if
fn 1st no such element exists

There are some additional functions in the List module, but many of these are just additionally
varied versions of these functions (iter2, for example, is just a form of iter that can operate on two
lists simultaneously), or “bake in” the function to apply to each of the elements (such as the average
function, which calculates the average of an array whose elements support addition and division
operations).

USING LISTS AND ARRAYS

Because using the functions described in the List and Array modules can be confusing at first to
the traditional object-oriented programmer, a few examples may help clear up their use.

In C# and Visual Basic, when looking through an array (or list) of Person objects for a Person
whose last name is “Neward”, most programmers write a for-each loop, looking through at the
LastName property of the Person object to see if it matches the criteria in question. To do this in F#,
assuming the existence of a class type called Person was already defined, you would write instead:

let people = [|
new Person("Ted", "Neward", 38)
new Person("Mark", "Richards", 45)
new Person("Ken", "Sipe", 43)
new Person("Naomi", "Wilson", 38)
new Person("Michael", "Neward", 16)
(

new Person("Matthew", "Neward", 9)
let newardsFound =
Array.find (fun (it : Person) -> it.LastName = "Neward")
people
System.Console.WriteLine (newardsFound)

Using Lists and Arrays [X73

If, instead, the goal was to know all the people who were of drinking age, however, the find
operation would want all the persons whose age was greater or equal than 21. Because this could
be any number of Persons, and all of them need to be returned, this is better returned as another
array:

let drinkers =
Array.filter (fun (it : Person) -> it.Age > 21) people

Of course, everybody who’s over 21 deserves a beer, and that’s something that needs to be applied to
each element in the array:
Array.iter (fun (it : Person) ->

System.Console.WriteLine("Have a beer {0}!", it.FirstName))
drinkers

The real power of this functional style becomes apparent when used with the pipeline operator (dis-
cussed in Chapter 13) to string each of these operations together:
people
|> Array.filter (fun (it : Person) -> it.Age > 21)
|> Array.iter (fun (it : Person) ->
System.Console.WriteLine ("Have a beer, {0}!",
it.FirstName))

When the filtered and iterated functions are named, the code becomes almost a natural
language:

people |> Array.filter isADrinker |> Array.iter haveABeer

Or the functions involved in the filter and iter operations can be named to make it look even
more readable:

let isADrinker (ar : Person array) =
Array.filter (fun (p : Person) -> p.Age > 21) ar
let haveABeer (ar : Person array) =
Array.iter (fun (p : Person) ->
System.Console.WriteLine ("Have a beer, {0}!",
p.FirstName))
ar
people |> isADrinker |> haveABeer

Of course, all these operations are equally applicable to either arrays or lists, simply by either con-
verting the type descriptors to use Person list instead of Person array, or in some cases by omitting
the type descriptor entirely and allowing F# to infer the types.

F#, like most functional languages, is without peer when working with collections this way. Most
C# and VB developers, after having used LINQ for a while, discover that many of the exact same
concepts built into LINQ are here in F# (and other functional languages). Even more deeply, if the
budding F# programmer wants to spend a few mind-blowing moments, they should go back to
their old SQL code, replace the columns with tuples and the tables with lists of tuples, and see how
quickly list access and manipulation in F# using functions feels almost identical to the canonical
SQL operations (SELECT, INSERT, UPDATE, DELETE).

More on using F# against a relational database is given in Chapter 19.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

74 [XCHAPTERS5 COMPOSITE TYPES

SEQUENCES

A sequence, according to the formal definition of the F# language, is simply a synonym for the
TEnumerable type defined in the .NET platform. As such, anytime an F# function produces an iter-
ator across a collection, it is typically a sequence type. However, because functional languages have
a rich history of using generators (functions that produce values, including functions that appear

to be infinitely large or lazily computed) as the source of values to other functions, F# has a much
wider suite of functions for sequence types (seq) than the .NET developer might expect.

By default, the sequence type is just a producer of values; in other words, when a sequence is
obtained, the sequence itself has no sense of what values it holds and will hand back — instead, it
has code internally that knows how to produce the next-expected value. For this reason, sequences
are frequently thought of as lazy, meaning they do not initialize to contain all the values they will
eventually produce.”

By far, the easiest way to obtain a sequence is to create one, using the seq keyword and a block of
code that yields a result each time the sequence is asked to produce one, as in:

let x = seq { for i = 1 to 10 do yield 1 }

It’s important to note that the sequence will not have yet produced any values — x is simply a gen-
erator of values, and each time it is asked to generate the value, it will execute the next branch of
the for construct. This means that the loop inside of the sequence isn’t really a loop at all, but a
sequence of executable statements — contrary to what might seem obvious, there isn’t a collection of
10 integers waiting to be handed back.

This becomes more obvious when we put some obvious side effect into the sequence loop, such as:

let v = seq { for i = 1 to 10 do
System.Console.WriteLine ("Generating {0}", i)
yield i }

When run, no such “Generating” lines appear on the screen, because as of this point, the sequence
has only been created, not asked to produce a value. The console.writeLine action won’t take
place until the sequence is asked to produce a value, such as when we convert the sequence into an
IEnumerable and ask it for its current value:

let v = seq { for i = 1 to 10 do
System.Console.WriteLine ("Generating {0}", i)
yield i }
let yEnum = y.GetEnumerator ()
if yEnum.MoveNext () then
System.Console.WriteLine (yEnum.Current)

This will produce “Generating 1” to the screen as soon as MoveNext () is called, because it is at that
point that the sequence is asked to produce its first value. No other value is generated, because only
that particular value is needed — any future values will be waiting to be generated on demand.

Note that sequences can be “reset” at any time by obtaining a new IEnumerator from the
GetEnumerator () method on the sequence, or by simply using the sequence in a different seq

*This is not quite what functional programmers think of when they use the term lazy, but it is a related
concept and will feel pretty lazy to programmers not used to the functional lingo.

Sequences [X75

module call. It is important to realize, however, that it is the TEnumerator that holds the “current
state” of the sequence and not the sequence itself.

This means that F# can permit what other languages would consider to be “impossible” sequences,
such as a sequence that never terminates. Imagine for a moment that we have a program that needs
to simulate rolling three six-sided dice several times.* This can be approximated by an infinite
sequence generating random numbers between 3 and 18, inclusive. We can generalize the function
that creates it to generate random numbers between any minimum and maximum values:

let randomNumberGenerator minvVal maxVal =
let randomer =
new System.Random/()
seq {
while (true) do
yvield (randomer.Next (maxVal - minval) + minVal)
}
let diceRolls = (randomNumberGenerator 3 18) |> Seq.take 6
Seq.iter
(fun (roll : int) ->
System.Console.WriteLine("You rolled a " +
roll.ToString()))
diceRolls

(See Chapter 13 for details on writing functions.) This code uses the Seq. take function to obtain
the first six values from the sequence, which should range between the values 3 and 18 and then
takes that resulting sequence of six “die rolls” and hands that into the seq. iter function for print-
ing each roll to the console.

In Chapter 4, we saw that for loops could be initialized with range expressions that made it fairly
easy to iterate through a collection of numbers in a sequential stepped format. It turns out that the
range expression is a kind of sequence expression so that the expression seq {0 .. 2}; produces a
sequence consisting of the values 0, 1, and 2. However — the difference between this expression and
the list or array examples we saw earlier is that, as discussed already, the sequence has not yet pro-
duced those values but will do so on demand.

As a side note, this behavior of the range expression is actually open to any user-
defined type, not just numeric values. Any type that defines member methods
(..)and (.. ..),as discussed in the section on defining operator methods in
Chapter 8, can be used in a range expression.

Combining sequences with a “for comprehension” is a trivial and natural thing to do, as in:
let squares = seq { for i in 0 .. 10 -> (i, i*i) }

This produces a sequence of int * int tuples consisting of the numbers 0 through 10 and their
squares; but again, the lazy nature of the sequence means that the body of the for loop has not yet
been fired but is waiting to be asked for the first value.

*Yes, ’'m looking at all of you who used to (or still do) play Dungeons & Dragons.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

76 [XCHAPTERS5 COMPOSITE TYPES

Sequences have broad application beyond just the computation of numbers, particularly anywhere
a stream of data instances from outside the program itself is the principal data item. For example,
developers frequently iterate through a directory or series of directories looking for files of a par-
ticular type for processing. If we consider the file itself to be the data item in question, then the
directory or set of directories becomes the scaffolding for the sequence:

let dir d =
let di = new System.IO.DirectoryInfo(d)
seq { for fi in di.GetFileSystemInfos() -> fi }

This makes it easy to get all the files in the root directory on the system:

let rootFiles = dir "C:\\"

Now, of course, given the sequence, it becomes trivial to walk through those files and display their
names:
let printFileInfo (fi : System.IO.FileSystemInfo) =

System.Console.WriteLine("{0}", fi.FullName)
for fi in rootFiles do printFileInfo fi

But the real power of the sequence again comes in its laziness; normally, trying to build a list of
all the files on the system requires the program to do a harsh bit of I/O gathering up all the data
required, but if a sequence is generated instead of an ordinary list, no disk I/O is performed until the
developer starts to look through the sequence:
let rec recursiveDir d =
let di = new System.IO.DirectoryInfo(d)
seq {
for £ in di.GetFiles() do yield £
for sd in di.GetDirectories() do
yield! recursiveDir sd.FullName }
let allFiles = recursiveDir @"C:\"
for fi in allFiles do printFileInfo fi

A couple things are happening here simultaneously: One, the sequence is being built from two
sources, rather than the single source expression that’s been demonstrated so far, and two, rather
than using the yield keyword to return a single instance back to the sequence, we use the yield!
keyword to yield back a sequence into the sequence, essentially appending the results of that (recur-
sively obtained) sequence to the one being generated. This second sequence, the one generating an
additional sequence, must be the last expression in the sequence block. Any number of item-generating
expressions can be used prior to that, however.

Like the array and list types, the sequence has a large number of functions defined in the Seq mod-
ule and can be thought of in a few loosely grouped categories which are described next.

Seq “Meta” Functions

These functions, like those listed for the array module, manipulate lists rather than the con-
tents within them. In general, these functions create or copy sequences, or do something to the
sequence as a whole, in much the same way that the functions described in the array section do.
There is a great deal of duplication here so that the F# programmer familiar with how an opera-
tion works on an array already knows how an operation will work on a sequence, and

vice versa.

Sequences [X77

append seqgl
seqg2

cache seq

cache seq

concat sseq

delay fn

distinct seq
empty<'t>
head seq

initInfinite
fn

isEmpty seq
length seq
nth seq 1
ofArray ar
ofList 1lst

readonly seq

singleton obj
skip n seq

skipWhile fn
seq

take n seq

takeWhile fn

seq
toArray seq
toList seq

truncate n

seq

windowed n

seq

Creates a new sequence containing the elements of segl and seq2 (in that
order)

Creates a cached sequence with the same values in seq, but only requiring cal-
culation/computation once

Creates a sequence out of another sequence of the same type

Creates a single sequence consisting of all the elements in the sequence of
sequences sseq

Returns a sequence that is built by £n (which is expected to take unit and return a
sequence) every time an IEnumerator for the sequence is requested

Creates a sequence consisting of all the unique elements of the given sequence seq
Returns an empty list of the given type t
Returns the head (first element) of seq

Creates a sequence that uses fn (which takes an int i) to generate the desired
i’'th element of the sequence

Returns true if seq is empty

Returns the length of seq

Returns the i’th element from the sequence seqg
Converts the array ar into a sequence

Converts the list 1st to a sequence

Creates a new sequence that delegates to the passed sequence segq; this
ensures that seq cannot be mutated or modified by a type cast

Creates a sequence consisting of the single object obj
Creates a sequence out of the items of sequence seq, skipping the first n items

Creates a sequence out of the items of sequence segq, skipping items if £n
returns true for a given item

Creates a sequence out of the first n items of the sequence seq

Creates a sequence out of the items of the sequence seq only if £n returns true
for a given item

Creates an array from the sequence seq
Creates a list from the sequence seq

Returns a sequence consisting of no more than n items from the sequence seq

Returns a sequence of “sliding windows” of the sequence seq as a sequence of
arrays of n size
Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

78 [XCHAPTERS5 COMPOSITE TYPES

Seq “Application” Operations

These functions operate on the contents of the sequence, typically by taking a function as a parame-
ter and invoking it once for each of the elements, passing that element in as a parameter (also known
as “applying” the function to each of the elements), to produce a result, either a single value or with

all the results grouped into another sequence.

choose fn seqg

compareWith
fn sqgl sg2

exists fn seqg

filter fn seq

find fn seq

findIndex fn

seq

fold fn s seqg

forall fn seq
iter fn seq

iteri fn seq

map fn seq

mapi fn seq

reduce fn seq

tryFind fn

seq

tryFindIndex
fn seq

Applies £n to each element in seq, and if £n returns Some (x) for that element,
includes it in the returned sequence

Compares each element of sgl to sg2 using the comparison function £ (which
is expected to take two parameters, one for each element, and return an int),
returning an int

Returns true if any of the elements in seq, when passed to fn, returns true

Returns a sequence consisting of the elements in seq that, when passed in to
fn, cause it to return true

Returns the first element in seqg that returns true when passed to £n; if no such
element exists in seq, throws an exception

Returns the index of the first element in seq that returns true when passed to fn;
if no such element exists, throws an exception

Applies £n to each element in seq, passing s in with the element, allowing s to
act as an accumulator across all of the calls

Returns true if all of the elements in seq, when passed to fn, return true
Applies fn to each element in seq; fn is expected to return unit

Applies £n to each element in seq; £n receives both the element and its index,
and is expected to return unit

Applies fn to each element in seq; fn is expected to yield a value, which is put
into a sequence and returned

Applies fn to each element in seq; £n receives both the element and its index,
and is expected to yield a value, which is put into a sequence and returned

Applies £n to each element in seq; £n receives both the element and its next
element

Returns the first element in seq for which £n returns true, or None if no such
element exists

Returns the index of the first element in seq for which £n returns true, or None if
no such element exists

There are some additional functions in the seq module, but many of these are just additionally var-
ied versions of the preceding functions (iter2, for example, is just a form of iter that can operate

Maps [X79

on two sequences simultaneously), or “bake in” the function to apply to each of the elements (such
as the average function, which calculates the average of a sequence whose elements support addition
and division operations).

MAPS

Maps, or dictionaries as the .NET FCL tends to call them, are collections of object-to-object pair-
ings, most often used as name-value or key-value pairs, where the key is typically a string and the
value is any particular type. Although not officially supported as an F# language construct, maps
are commonly enough used that we can think of them as such, and have a number of interesting
library supporting functions that make them almost trivial to use.

Map Construction

Creating a new map is relatively easy. If we visualize a map as a list of pairs, then the Map.ofList
function makes it easy to transform a list of two-element tuples into a Map:

let nicknames = Map.ofList [

"Ted" ,new Person("Ted", "Neward", 38);
"Katie",new Person("Katie", "Ellison", 30);
"Mike",new Person("Michael", "Neward", 16)

]

Officially, the type returned by this function is a Map<string, string>, and the returned object is
fully compatible with the rest of the .NET FCL — it implements the TDictionary<> interface and the
ICollection<> interface yet is still “F#”-ish, in that this is also a sequence of System.Collections
.Generic.KeyValuePair<string, string> items.

Maps can also be constructed from arrays (using Map.ofArray) or sequences (using Map.ofSeq); the
syntax is almost identical to the preceding code, using sequence or array notation as appropriate.

Like arrays and lists, maps are type-safe, type-parameterized constructs that refuse to accept some-
thing (as either key or value) that is not type-compatible, so a Map<string, string> will not accept
anything other than a string for the key or value. Also, like lists, when constructed, maps are immu-
table, so any “modification” operation (Add or Remove) on the map doesn’t modify the contents of
the map but returns a new map with the modification in it:

let moreNicknames =
nicknames.Add ("Mark", new Person("William", "Richards",45))

An IDictionary<> instance can also be constructed explicitly from a sequence of two-element
tuples using the dict function:
let numberMappings = dict [
(1, "One"); (2, "Two"); (3, "Three")
]

However, despite the surface similarities, dict doesn’t return an F# map, per se — the returned
object doesn’t quite implement all the same APIs as the returned object from Map.ofList, and as
a result, the dict-returned object won’t be acceptable as a parameter to the various Map functions

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

80 [XCHAPTERS5 COMPOSITE TYPES

(listed next). This also has other implications; for example, calling Add () on the dict-returned
object modifies the internal collection rather than returning a new one.

For the most part, prefer to use the map functions to create a map when writing F# code, and use
dict to create NET FCL-compatible Dictionary<> objects for easier interoperability with the rest
of the .NET ecosystem. (See Chapter 18 for details on F#/.NET interoperability.)

Map Access

Accessing the values in a map can be done in one of two ways, and just as with the list and array
types, one of them is more .NET-like, and the other is more F#-like. Both rely conceptually on using
the “key” of the pair to find the “value” of the pair.

Accessing values of the map in the .NET style involves using the built-in Ttem property in the tradi-
tional manner, as if the collection were an array taking the key type as a parameter:

let ted = nicknames.["Ted"]
System.Console.WriteLine (ted)

The other approach, preferred by functional programmers, involves the £ind function defined on
the Map module:

let ted = Map.find "Ted" nicknames
System.Console.WriteLine (ted)

The reason for the two different approaches will become more clear in Part 3, “Functional
Programming,” when functions and function composition is introduced and explained; for now, just
recognize that either style yields exactly the same result, the Person object whose value matches that
of the string key passed in, or an exception if the key isn’t found in the map:

try
let noone = nicknames.["Katie"]
System.Console.WriteLine (noone)

with

| ex -> System.Console.WriteLine("Katie not found")

try
let noone = Map.find "Katie" nicknames
System.Console.WriteLine (noone)

with

| ex -> System.Console.WriteLine("Katie not found")

Exception-handling is discussed in Chapter 4.

After having read the section on the option type, it may seem that F# should support some kind of
lookup operation that returns an Option instance, either some(value) if found or None if the key isn’t
present, rather than throw an exception in the case of failure. Said readers would be correct; again,
two different forms of lookup-without-exception are available, one a more FCL-ish style, the other a
more F#-ish style:

let notfound = nicknames.TryFind("Katie")
System.Console.WriteLine (
if notfound = None then "Not found"
else notfound.Value.ToString /()

Maps [x81

)
let notfound = Map.tryFind "Katie" nicknames
System.Console.WriteLine (

if notfound = None then "Not found"

else notfound.Value.ToString ()

The more idiomatic way to write this would be to use a pattern-match on the
returned Option, as discussed in Chapter 6.

Additionally, if you want to test to see if the key is in the map rather than return the value corre-
sponding to the key, you can use either the containsKey () instance method or the Map.tryFindKey
function.

Map Functions

The Map module has a number of functions that can operate on maps, as shown here:

add k v map

containsKey k
map

exists fn map

filter fn map
find k map

findKey fn

map

fold fn s map

foldBack fn s

map
forall fn map
isEmpty map
iter fn map

map fn map

Adds the pair (k, v) to map and returns the new collection

Returns true if map contains the key k

Returns true if there is at least one key/value pair in map that returns true when
passed to fn

Returns a new map containing the bindings for which £n returns true
Finds the element k in the map, or else throws an exception if not present

Finds the key for which £n returns true, or throws an exception if none of the
keys match

Executes £n over each of the key/value pairs in the map, passing an accumu-
lated state s to each function and capturing the returned state (to be passed to
the next pair)

Similar to fold, but starts from the end of the map and works forward

Returns true if £n evaluates to true for all the pairs in the map
Returns true if map is empty
Executes £n on each key/value pair in map

Creates a new map by executing £n over each key/value pair in map

continues

Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

82 [XCHAPTERS5 COMPOSITE TYPES

(continued)
ofArray ary
ofList 1lst
ofSeq seqg

partition fn
map

pick fn map
remove k map
toArray map

toList map

Returns a new map made up of the elements in ary
Returns a new map made up of the elements in 1st
Returns a new map made up of the elements in seqg

Builds two maps (returned as a tuple), the first consisting of those key/value
bindings which return true from £n, the second for the rest

Returns the first element in map for which fn returns Some
Returns a map without the pair given by the key k
Converts map into an array of (key, value) tuples

Converts map into a list of (key, value) tuples

toSeq map Converts map into a sequence of (key, value) tuples

tryFind Like find, but without the exception, returning an option (Some or None) instead

tryFindKey Like findKey, but without the exception, returning an option (Some or None)
instead

tryPick Like pick, but without the exception, returning an option (Some or None) instead

Most of these are self-explanatory, particularly when compared to the similarly named methods of
List and Array and after higher-order functions are introduced in Part 3.

SETS

Sets are another example of a type in F# that isn’t implemented as a built-in type, yet has syntactic
support enough to make it “feel” as it if were built-in, like maps. Fundamentally, a set is a strongly
typed collection of objects that enforces a “no duplicates” principle:

let setOfPeople = Set.ofList [new Person("Ted", "Neward", 38);
new Person("Ted", "Neward", 38);
new Person("Ted", "Neward", 38);]

for p in setOfPeople do

System.Console.WriteLine (p)

When run, only one object will display, the other two having been determined to be duplicates and
therefore discarded.

The object that is returned is a Set<>, in this particular case, a Set<Person>, and like the preced-
ing map, implements many of the NET FCL types that .NET developers would expect for a collec-
tion type: IComparable, ICollection, and IEnumerable to be precise. (See Chapter 9 for details
on interface inheritance in F#.) It also implements the interface corresponding to sequences, so any
place a sequence is expected, a correspondingly strongly typed set can be passed in its place.

Summary [X83

Like the map, sets can also be constructed using the set function that takes a list and converts it to a
set:

let setOfNicknames = set ["Ted"; "Theo"; "Tio";
|lTed|l ,, I|Tedl| ,. n Teddyn]
for p in setOfNicknames do
System.Console.WriteLine (p)

In the case of set, however, the returned object is the exact same type as that returned from set
.ofList (or Set.ofArray or Set.ofSeq, used to construct sets from arrays or sequences, respec-
tively), so there is no practical difference between the two.

One thing that differentiates sets from other collections is that types that are placed into a set

must be comparable somehow so that the set can determine if the object instance is already pres-
ent inside the set. In F#, this means the type in question must implement the TComparable interface
(as described in Chapter 9), and as a result any type which doesn’t support TComparable, such as
the base type system.Object, won’t go into a set; attempts to do so will generate an error, either at
compile-time or at runtime.

Given that objects in a set are comparable, however, the set can provide some interesting additional
functionality, such as finding the maximum and minimum value of all the items inside the set. These
are available either as instance methods on the Set<> object, or as library methods from the Set
module.

Again like its cousin the map, the set is an immutable collection, meaning that any attempt to mod-
ify the set will result in a new set being created and returned. More interestingly, however, beyond

the simple add and remove from the set, the set also supports various “set theory” operations, such
as intersection, union, difference, and testing for superset and subset comparison operations, all of
which are possible because of the “comparison requirement” that sets impose on their contents.

In general, sets are good for domain objects, because domain objects frequently want or need to be
unique within the domain, and the set operations can reduce the code developers need write.

SUMMARY

F# provides a number of powerful composite types for the F# programmer, above and beyond those
provided by the underlying .NET BCL. Lists are first-class citizens and the preferred way to collect a
homogenous group of values together, but arrays are fully supported as well. Option types provide

a safer means of dealing with the “no value” possibility, and tuple types provide a stronger method

of working with a tightly grouped set of values without going to the trouble of creating a named, dis-
tinct type. Sequences are generic streams of objects and can either be a concrete finite set of data or
lazily generated values produced on demand. Maps and sets are collection types that have some useful
library support that allow them to look like language-supported built-in types and stand as an exam-
ple of what additional functionality can be layered into F# without having to change the language
itself, in addition to being useful entities in their own right.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Pattern Matching

WHAT'’S IN THIS CHAPTER?

Understanding patterns and pattern-matching
Using pattern matching types
Applying pattern guards

@ © o ©

Using active patterns

More so than any other construct thus far explored, pattern matching is what distinguishes F#
from the other languages in the .NET family. Pattern-matching is a hallmark of the functional
language, and its power is something that is rapidly finding its way (in various guises) into
other languages.

BASICS

Fundamentally, pattern-matching looks, on the surface, like a variation on the switch/case
construct from the C-family of languages: A value is tested, and depending on its contents, one
of several different “branches” of code is evaluated:

let x = 12

match x with

| 12 -> System.Console.WriteLine("It's 12")

| _ -> System.Console.WriteLine("It's not 12")

The syntax is somewhat similar to the switch/case of C#; broken down, a pattern-match con-
sists of the following:

©® The match keyword, preceding the expression to be evaluated

©® The with keyword, indicating the start of one or more various values to compare
against

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

86 [XCHAPTER6 PATTERN MATCHING

The vertical pipe character () at the start of each match clause to evaluate against

A match clause, which can take one of several different forms as described later in this
chapter

The arrow (->), separating the match clause from the expression to execute if the match
clause succeeds

As is consistent with F#’s syntax, the underscore (_) character acts as a wildcard when used: any-
thing that doesn’t match against preceding clauses will match against this one.

Note that unlike the switch/case from imperative languages, the pattern-match is an expression,
meaning that it, too, yields a value when evaluated:

let y = match x with
| 12 -> 24
| _ -> 36

This means that the various clauses in the pattern-match must all yield compatibly typed values, just
as with the if/then construct (see Chapter 4 for details).

Leaving the discussion there, however, you miss out on all the other fun things that pattern-
matching can do, such as value extraction into local variable bindings:

‘) let people = [
("Ted", "Neward", 38)

Available for ("Mark", "Richards", 45)
download on " Cn e "
Wrox.com E Naomi", "Wilson", 38)

"Ken", "Sipe", 43)
]
List.iter
(fun (p) ->
match p with
| (fn, 1n, a) ->
System.Console.WriteLine("{0} {1}", fn, 1ln)
| _ ->
failwith "Unexpected value"
)
people

Code snippet PatternMatching.fs

In the preceding code, the List . iter function executes the anonymous function against each of the
string/string/int tuples in the list. (For more on lists and tuples, see Chapter 5; for more on anony-
mous functions, see Chapter 13.) The important part of this example is the first match clause: If the value
matched is a three-part tuple — which F# infers because the match clause uses a three-part tuple syntax
((fn, 1n, a))— then the individual elements of the tuple are each bound to the local variables fn, 1n,
and a, respectively. Because the previous example never actually uses the third part of the tuple, we can
again leverage the wildcard pattern to indicate that it is irrelevant to the remainder of the expression:

\) let people = [

("Ted", "Neward", 38)
Available for ("Mark", "Richards", 45)
download on " Cn s "
Wrox.com E Naomi", "Wilson", 38)

"Ken", "Sipe", 43)

Basics [x87

1
List.iter
(fun (p) ->
match p with
| (fn, 1n, _) ->
System.Console.WriteLine("{0} {1}", fn, 1n)
| _ ->
failwith "Unexpected value"
)
people

Code snippet PatternMatching.fs

The match expression itself doesn’t just have to be a variable, and frequently serves as a way to make
values easier to match inside of match clauses:

let p = new Person("Ken", "Sipe", 45)
let lastName = match (p.FirstName, p.LastName, p.Age) with
| ("Ken", "Sipe", _) -> p.LastName

| s

Many of the examples in this chapter reference the Person class, which is defined
in Chapter 8.

In this case, the match expression is a three-part tuple, built from the three properties of the Person
type (FirstName, LastName, and Age). Thus, only if p. FirstName matches against the constant value
"Ken", p.LastName matches against "Sipe", and p.Age matches against any value (because of the use
of the wildcard _ here) will the expression to the right side of the arrow be evaluated. If the match isn’t
made, the second match clause, the wildcard expression, will be matched, yielding an empty string.

Just because Person has three properties on it doesn’t mean we have to use all those properties;
because we don’t care about the age of the Person p, the above expression could have been written
more simply as:

let p = new Person("Ken", "Sipe", 45)
let lastName = match (p.FirstName, p.LastName) with
| ("Ken", "Sipe") -> p.LastName

| s

Again, the match is defining a tuple out of p.FirstName and p.LastName and then matching it
against possible expression types and values to find a block of code to execute.

This capability to match a variety of possible types and values and bind those values into local vari-
ables for later use makes pattern-matching a valuable construct for performing data-manipulation
tasks against a collection, such as a list:

\) let persons =
new Person("Ted", "Neward", 38)

[
(
Available for new Person("Ken", "Sipe", 43)
(
(

download on "M W "
Wrox.com new Person("Michael", "Neward", 16)

"Matthew", "Neward", 9)
Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

new Person

88 [XCHAPTER6 PATTERN MATCHING

new Person("Mark", "Richards", 45)
new Person("Naomi", "Wilson", 38)
new Person("Amanda", "Sipe", 18)

1
List.iter
(fun (p : Person) ->
match (p.FirstName, p.LastName) with
| (fn, "sipe") ->

System.Console.WriteLine("Hello, {0}!", £fn)
| (fn, "Neward") ->
System.Console.WriteLine("Go away, {0}!", fn)

| _ —>
System.Console.WriteLine ("Who the heck are you?")
)

persons

Code snippet PatternMatching.fs

Using pattern-matching to sift through a collection of data (such as the preceding Persons list) is a
common idiom in F#, as is pattern-matching using the Option type to avoid null dereferences (and the
subsequent exception) when searching through a collection of data. Of all the syntactic constructs in the
F# language, pattern-matching is likely the most valuable — and thus the most important — to learn.

PATTERN TYPES

A variety of different match constructs are available for use in the body of the match expression.
Note that any of these can be combined with any other of the pattern types, allowing F# developers
to “mix and match” as the mood suits them. This can sometimes create some surprising effects and
can potentially lead to some surprising results — remember that matches are evaluated in a top-
down fashion, and to help out, wherever possible the F# compiler will assist as best it can in finding
matches that will never allow any further match to succeed, or when the pattern-match leaves some
particular value or range of values out. The compiler isn’t perfect, however, and when it detects an
unmatched construct at runtime, a MatchFailure exception will be generated and thrown.

Constant Patterns

As already demonstrated, a pattern-match can match against constant values in a manner entirely
similar to that of the switch/case construct from any C-family language:

\) let x = (new System.Random()) .Next (5)
let message = match x with

Available for | 0 -> "zero"

o 1 > voner
| 2 -> "two"
| 3 -> "three"
| 4 -> "four"
| 5 -> "five"
| _ -> "Unknown: " + x.ToString()

Code snippet PatternMatching.fs

Pattern Types [X89

As might well be expected, the match only works if the value stored in x is equal to the value in an
individual match clause, such that if x holds the value 3, the corresponding result for message will
be "three". Officially, this evaluation of equality is done using the F# method Fsharp.cCore
.Operators. (=) (defining operator methods is described in more detail in Chapter 8).

Note that null is an acceptable constant value to match against, though F# code in general frowns on
the use of null, preferring to use Option types (see Chapter 5) instead, using None to represent no value.

Unlike the switch/case, multiple constants can be matched, allowing easy construction of state
machines or truth tables:

‘) let x = (new System.Random()) .Next (2)
let v = (new System.Random()) .Next (2)
Available for let quadrant = match x, y with

domiag o o Yoo

' | 0, 1 -> "(0,1)"

| 0, 2 -> "(0,2)"

[1, 0 -> "(1,0)"

[1, 1 -> "(1,1)"

[1, 2 -> "(1,2)"

[2, 0 -> "(2,0)"

[2, 1 -> "(2,1)"

1

| 2, 2 —> "(2,2)"
System.Console.WriteLine("We got {0}", quadrant)

Code snippet PatternMatching.fs

In the preceding code, the F# compiler will emit a warning about possible unmatched cases, because
it cannot determine that the ranges of x and y are limited to 0 and 2. This is F# trying to help avoid
a runtime exception, because it can’t determine that the values of x and y will be limited to the
range 0 to 2 (as defined by the Random.Next () method call).

Variable-Binding (“Named”) Patterns

If the match clause consists of a name beginning with a lowercase letter, then it is a variable-binding
pattern, and it introduces a new local variable into which the value is bound for use in the expres-
sion to the right of the arrow:

let p = new Person("Rachel", "Reese", 25)
let message = match p.FirstName with
| fn -> "Hello, " + fn

System.Console.WriteLine("We got {0}", message)

Admittedly, this particular example is a bit contrived, because we could just as easily have obtained
said value by simply using the FirstName property on the Person object, but this will become much
more useful when combined with some of the other patterns, such as tuple or list patterns. When
combined with constant patterns, it allows for a useful “default” case:

let p = new Person("Rachel", "Appel", 25)
let message = match p.FirstName with

| "Rachel" -> "It's one of the Rachii!!"

| fn -> "Alas, you are not a Rachii, " + fn
System.Console.WriteLine("We got {0}", message)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

90 [XCHAPTER6 PATTERN MATCHING

Variables bound this way are scoped to the match construct itself.

AND, OR Patterns

Patterns can combine using the Boolean operator “I” (for “or”), so that the right expression will be
evaluated if either of the two clauses is a match:

let p = new Person("Rachel", "Reese", 25)
let message = match p.FirstName with
| ("Rachel" | "Scott") ->
"Hello, " + p.FirstName

| _ ->
"Who are you, again?"
System.Console.WriteLine("We got {0}", message)

Patterns can also use the & to connect two clauses that must both match for the right expression to
fire, but for the most part, this will be limited to the use of active patterns discussed next.

Literal Patterns

Given what’s been said already about F#’s binding of values to names and the pattern-matching
rules, it would seem reasonable to expect the following to work:

let rachel = "Rachel"
let p = new Person("Rachel", "Reese", 25)
let message = match p.FirstName with
| rachel -> "Howdy, Rachel!"
System.Console.WriteLine("We got {0}", message)

And, it will — it will work too well as the compiler will tell us when we try to add any additional
clauses to the pattern-match:

let Rachel = "Rachel"
let p = new Person("Rachel", "Reese", 25)
let message = match p.FirstName with
| Rachel -> "Howdy, Rachel!"
| _ -> "Howdy, whoever you are!"
System.Console.WriteLine("We got {0}", message)

The F# compiler will emit a warning that the wildcard clause will never be matched, which seems
strange. However, a little bit further investigation reveals that despite the direct literal assignment,
F# doesn’t consider rachel to be a constant to compare against. Instead, it introduces a new bind-
ing; to be precise, F# binds the value of the match (p.FirstName) into a new name, rachel, for the
duration of the pattern-match.

To tell F# that the binding “rachel” should be treated as a literal value in the pattern match, the
.NET attribute “Literal” (introduced in Chapter 3) should be put on the 1et expression that intro-
duces it:

[<Literal>]
let Rachel = "Rachel"
let p = new Person("Rachel", "Reese", 25)

Pattern Types [xX91

let message = match p.FirstName with

| Rachel -> "Howdy, Rachel!"

| _ -> "Howdy, whoever you are!"
System.Console.WriteLine("We got {0}", message)

Now the warning goes away, and the pattern-match behaves as expected.

Notice that in order for the language to recognize the Literal as an actual literal,
it must be uppercased; leaving the Literal identifier written as "rachel" will still
fire the warning.

Tuple Patterns

Technically, we’ve already seen tuple matching; in the constant patterns section, we showed the

’

following:
\) let x = (new System.Random()) .Next (2)
let v = (new System.Random()) .Next (2)
Available for let quadrant = match x, y with
Sounioag o [0, 0> "(0,0)"
| 0, 1 -> "(0,1)"
| 0, 2 -> "(0,2)"
| 1, 0 -> "(1,0)"
| 1, 1 -> »(1,1)"
| 1, 2 -> »(1,2)"
[2, 0 -> "(2,0)"
| 2, 1 -> "(2 1)

| 2, 2 —> "(2,2)"
System.Console.WriteLine("We got {0}", message)

Code snippet PatternMatching.fs

What we didn’t say at the time is that the F# language considers the x, y pair to be a tuple. F# allows
tuples to be used both in the match value and the criteria, as the preceding code demonstrates.
Tuple-based pattern-matching combined with named patterns is one of the most common ways to
extract the values out of a tuple:

let t = ("Aaron", "Erickson", 35)
let message = match t with
| (first, last, age) ->
"Howdy " + first + " " + last +
", I'm glad to hear you're " +
age.ToString() + "!"
System.Console.WriteLine("We got {0}", message)

Tuples and pattern-matching go well together, so much so that it should be assumed that wher-
ever tuples are used, pattern-matching will be used to extract and manipulate the data from
inside the tuple.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

92 [XCHAPTER6 PATTERN MATCHING

as Patterns

The as keyword allows us to do both extraction from a tuple and bind a new name to the original
tuple at the same time:

let message = match tl with
| (x,y) as t2 ->
x.ToString() + " " +
y.ToString() + " " +
t2.ToString ()
System.Console.WriteLine("We got {0}", message)

In this case, the original tuple value (t1) is not only extracted into the individual values x1 and y1,
but also into the tuple value t2. This pattern-match type isn’t common, at least not in this form; see
the section “Beyond the Match” for details.

List Patterns

Pattern-matching can also be used to match and extract values from lists, usually by extracting the
head and the tail of the list into local values:

let numbers = [1; 2; 3; 4; 5]
let rec sumList ns = match ns with
| [1 >0
| head :: tail -> head + sumList tail
let sum = sumList numbers
System.Console.WriteLine("Sum of numbers = {0}", sum)

Here the list is matched either against the empty list, or the head of the list is extracted into the local
value “head” and the tail (which may be empty, if the incoming list is exactly one element long) is
extracted into the local value “tail.” This is an extremely common idiom in F#, particularly because
of its thread-safe nature (because all state is held on the stack, rather than in a temporary variable;
see Chapter 14 for more on F# and immutable state).

Note, however, that other forms of matching against the list are possible; for example the following
is a more verbose way of extracting the first few values of a list:

let message = match numbers with
| [1 -> "List is empty!"

| [one] ->
"List has one item: " + one.ToString/()
| [one; twol] ->
"List has two items: " +
one.ToString() + " " + two.ToString()

| _ -> "List has more than two items"
System.Console.WriteLine (message)

Again, because the pattern-match happens in a top-down fashion, the wildcard only matches if the
list has three or more items in it. In general, however, because this style of list-matching has no con-
venient way to match against a list of arbitrary length, the preferred manner is to use the head

tail pattern recursively.

Pattern Types [X93

Array Patterns

Just as pattern-matching can match against lists, pattern-matching can also match against arrays:

let numbers [11; 2; 3; 4; 5|1
let message = match numbers with
| [] |1 -> "Array is empty!"

| [| one |1 ->
"Array has one item: " + one.ToString/()
| [] one; two |] ->
"Array has two items: " +
one.ToString() + " " + two.ToString()

| _ -> "Array has more than two items"
System.Console.WriteLine (message)

However, because arrays lack an easy way to “tear off” a piece of the array and recursively process
the remainder, as lists do, arrays are rarely used as a source or target of pattern-matching.

Discriminated Union Patterns

Pattern-matching against discriminated unions (described in Chapter 7) is not much different
than pattern-matching against other types, with the exception that the compiler sanity-checks
to ensure that a match against a discriminated union value only has match clauses that could be
remotely possible.

type Color =
| Black
| Blue
| cyan
| Gray
| Green
| Magenta
| DarkBlue
| Red

| white

| Yellow

let color = Black
let message = match color with

| Black -> "Black!"

| Blue -> "Blue!"

| _ -> "Something other than black or blue"
System.Console.WriteLine (message)

Discriminated unions are a powerful companion to pattern-matching, just as tuples are.

Record Patterns

Record types, described more in Chapter 7, can also be pattern-matched (and values extracted) in
much the same way that tuples are. In fact, since a record type is, in many ways, “just” a tuple, pat-
tern matching with a record type is just an extension of doing it against a tuple type:

type Author =
| Author of string * string * int

let ted = Author("Ted", "Neward", 38)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

94 [XCHAPTER6 PATTERN MATCHING

match ted with
| Author (first, last, age) ->
System.Console.WriteLine("Hello, {0}", first)

Record types are covered in more detail in Chapter 7, and more examples of pattern-matching
with records are given there.

PATTERN GUARDS

Despite all the power inherent in the various pattern types, F# developers will still periodically find
situations where a pattern-match is clearly the best control construct to use, yet the match criteria
just isn’t quite a one-to-one match with one of the existing pattern types. For those situations, the
F# language provides the capability to put a when clause on the pattern, effectively a Boolean check
that must be passed for the clause to be fired:

let p = new Person("Rick", "Minerich", 35)
let message = match (p.FirstName) with
| _ when p.Age > 30 ->
"Never found"
| "Minerich" when p.FirstName <> "Rick" ->
"Also never found"
| "Minerich" ->
"Hiya, Rick!"
| _ ->
"Who are you?"
System.Console.WriteLine("We got {0}", message)

In essence, the when clause gives the F# developer the ability to attach any arbitrary criteria to the
pattern-match, above and beyond those criteria defined by the various pattern-match rules already
described. This capability can be badly abused, because any number of when clauses can be strung
together using the Boolean operators, like so:

let p = new Person("Rick", "Minerich", 35)
let isOldFogey (person : Person) =

match person with

| _ when person.Age > 35 ||

(person.FirstName = "Ted" &&
person.LastName = "Neward") |
(person.FirstName = "Aaron" &&
person.LastName = "Erickson") ->
true
| _ -> false

System.Console.WriteLine("{0} is an old fogey: {1}",
p, 1sOldFogey p)

In these cases, it’s often better to restructure the code to be more intentional about what the restric-
tions are, either by breaking the pattern-match into multiple matches, using active patterns, or out
into separate functions entirely.

A first refactoring of the preceding code might produce:

let isOldFogey' (person : Person) =
let is0ld (p : Person) =

Active Patterns [X95

p.Age > 35
let isTed (p : Person) =
p.FirstName = "Ted" && p.LastName = "Neward"
let isAaron (p : Person) =
p.FirstName = "Aaron" && p.LastName = "Erickson"
match p with
| _ when is0ld p || isTed p || isAaron p ->
true
| _ >
false

System.Console.WriteLine("{0} is an old fogey: {1}"
p, 1sOldFogey' p)

But it should be pointed out that it’s possible to completely rewrite the match to take advantage of
pattern-matching more effectively, and reduce the use of the when to its minimalist case:

let isOldFogey'' (p : Person) =
match p.Age, p.FirstName, p.LastName with

| _, "Ted", "Neward" -> true

| _, "Aaron", "Erickson" -> true
| a, _, _ when a > 35 -> true

| _ -> false

System.Console.WriteLine("{0} is an old fogey: {1}",
p, 1sOldFogey'' p)

For the most part, when tempted to use a when clause, the neophyte F# developer should take an
extra moment to see if another pattern-matching construct can achieve the same effect.

y The use of the apostrophe and double apostrophe, deriving from the “prime”
and “double-prime” in mathematics, in the two refactorings above may
throw the hardened C# developer off (as it did one reviewer of the book).
While legal, the use of the apostrophe may make it hard for F# neophytes to
understand the syntax, and it will certainly make it hard for other .NET lan-
guages to consume a function or member using it in the name. As a result, F#
developers should probably consider restricting its use to locally-scoped mem-
bers (which won’t be seen by external users of the code) and for temporary
refactorings.

ACTIVE PATTERNS

If there is any criticism of pattern-matching, it is that the pattern-match is, at least so far, restricted
to types understood by the F# compiler — meaning no complex composite types, like business object
types, are eligible. This has historically meant that functional languages avoided “abstraction” in
the traditional object-oriented sense, in favor of a “lightweight abstraction” by simply bundling data
elements together and calling it a data type.

With F#, this limitation more or less goes away with the introduction of active patterns. In essence,
active patterns are functions usable from within pattern-match rules, providing a degree of flexibil-
ity and extensibility beyond that of pattern-matching described thus far.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

96 [XCHAPTERG6 PATTERN MATCHING

Active patterns can be thought of in three general forms: a single-case active pattern, which is used
to convert data from one type to another for use in a pattern-match; a partial-case active pattern,
which helps to match when data-conversion failures are possible or likely; and a multi-case active
pattern, which can take the input data and break it into one of several different groupings.

Single Case

The single-case active pattern is conceptually the easiest to understand: It allows the F# developer to
specify a function that is called from inside the pattern-match — rather than before the match — so
as to allow for processing or conversion of the data.

For example, when a developer starts to get used to using pattern-matching, it’s fairly common to
want to use it to handle all sorts of multi-case logic, such as situations where we want to determine
if text matches a particular input pattern. It’s not too difficult to imagine validation cases in a web
application where a developer wants to determine if a text string contains “dangerous” input, such
as embedded HTML tags of some form:

let inputData = "This is some <script>alert()</script> data"
let contains (inStr : string) =
inStr.Contains "<script>"
System.Console.WriteLine("Does the text contain bad data? " +
(contains inputData) .ToString())

Obviously a real implementation would be screening for much more beyond <script> tags, so a
refinement is necessary:

let inputData = "This is some <script>alert()</script> data"

let contains (srchStr : string) (inStr : string) =
inStr.Contains srchStr

System.Console.WriteLine ("Does the text contain bad data? " +
(contains "<script>" inputData).ToString())

But using this requires us to list out all the possible “bad tags” that might appear in this user-input
string, which can get tedious:

let inputData = "This is some <script>alert()</script> data"
let contains (srchStr : string) (inStr : string) =
inStr.Contains srchStr
let goodInput inStr =
contains "<script>" inStr ||
contains "<object>" inStr ||
contains "<embed>" inStr ||
contains "<applet>" inStr
System.Console.WriteLine("Does the text contain bad data? " +
(goodInput inputData).ToString())

Frankly, this is precisely the kind of thing that pattern-matching was originally intended to model,
to avoid having to write this kind of code. Unfortunately, attempting to use contains () inside the
pattern-match causes the pattern-match to match on the results of the contains () call, which isn’t
quite what’s needed here, particularly because we need to call contains () over and over again
(once for each potentially “bad” input).

Enter the single-case active pattern. By defining an active pattern — a function defined with
“banana clips” around it — the function can be called as part of the pattern-match, as in:

Active Patterns [x97

let (|Contains|) srchStr (inStr : string) =
inStr.Contains srchStr

let isSafeHtml inputData =
match inputData with

| Contains "<script>" true -> false

| Contains "<object>" true -> false

| Contains "<embed>" true -> false

\ Contains "<applet>" true -> false

| -> true

Viewed this way, it may not seem like the active pattern is saving much time or space, but the logical
equivalent, when written out, would be a series of nested “if” or pattern-match statements, testing
each possibility one-by-one before finally resolving to some result.

The parameters to the Contains pattern function don’t seem to match precisely against the use inside
the pattern-match itself. This is because the first parameter (srchstr in the Contains () example) is
coming from the match clause (<script>), and the second parameter (inStr) from the value being
matched against (inputData). Regardless of the number of parameters to the active recognizer (the
term the F# language uses for the contains () function), the last parameter in the function definition
is always the value being matched. The true at the end of the match clause is the actual test — if the
Contains () call returns true, it matches against the value in the test (the literal “true”), and thus

the match clause succeeds.

Partial Case

The partial-case active pattern is, in many ways, a variant of the single-case active pattern,

in that it allows for matches that may or may not always match successfully; in other words,

it enables a “partitioning” of the input space into one or more possible variations. To under-
stand what that means, let’s return to the previous input-validation scenario. Much of the input
validation itself would be made easier if we could incorporate a regular expression into the

mix — in other words, if we could “partition out” the input into either something that matched
a given regex or not. To do so, we can write a partial-case active pattern — again using the
“banana clips” notation — to define it:

let inputData = "This is some <script>alert()</script> data"

let (|Contains|_|) pat inStr =
let results =
(System.Text.RegularExpressions.Regex.Matches (inStr, pat))
if results.Count > 0
then Some [for m in results -> m.Value]
else None

let matchStuff inData =
match inData with

| Contains "http://S+" _ -> "Contains urls"

\ Contains "[7?@]@[".]+\.\W+" _ -> "Contains emails"
| Contains "\<script\>" _ -> "Found <script>"

| Contains "\<object\>" _ -> "Found <object>"

\

_ -> "Didn't find what we were looking for"
System.Console.WriteLine (matchStuff inputData)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

98

[XCEHAPTER 6 PATTERN MATCHING

The defining characteristic of a partial-case pattern match is twofold; first, the “wildcard” character
defined as part of the function’s name (such as (|cContains|_|) in the preceding code), intended to
convey the idea that this is not always necessarily going to yield a successful result; and second, the
return of the function being an option type, with Some returning the results (which we ignore in
our example), and None implying that the match didn’t work.

Note that we can have numerous partial-case pattern matches; in fact, we can have as many as
might be necessary to help complete the match. So, to use a different example (drawing from the
person class defined in Chapter 8), we can write several partial-case pattern match constructs to
make it easier to use Reflection to find a particular part of a type:

let AllBindingFlags =

BindingFlags.NonPublic ||| BindingFlags.Public |||
BindingFlags.Instance ||| BindingFlags.Static
let (|Field|_|) name (t : System.Type) =

let fi = t.GetField(name, AllBindingFlags)
if fi <> null then Some(fi) else None
let (|Method|_|) name (t : System.Type) =
let fi = t.GetMethod(name, AllBindingFlags)
if fi <> null then Some(fi) else None
let (|Property|_|) name (t : System.Type) =
let fi = t.GetProperty(name, AllBindingFlags)
if fi <> null then Some(fi) else None
let pt = (new Person("", "", 0)).GetType()
let message =
match pt with
| Property "FirstName" pi ->
"Found property " + pi.ToString/()
| Property "LastName" pi ->
"Found property " + pi.ToString/()
| _ -> "There's other stuff, but who cares?"
System.Console.WriteLine (message)

Note that this example assumes that the System.Reflection namespace has
been opened already, as described in Chapter 11.

Contrary to what a Reflection-based example might imply, and what the preceding syntax seems

to reinforce, this code won’t find all the different properties, fields, and methods on the type passed
in; instead, as is always the case with pattern-matching, it finds the first match that succeeds and
returns that as the result of the pattern-match expression. This means that the partial-case pattern
is good for finding a particular element (such as the FirstName property on any passed-in object)
before extracting its value from that object:

let AllBindingFlags =
BindingFlags.NonPublic ||| BindingFlags.Public |||
BindingFlags.Instance ||| BindingFlags.Static

let (|Field|_|) name (inst : obj) =
let fi = inst.GetType().GetField(name, AllBindingFlags)
if fi <> null

Active Patterns [X99

then Some(fi.GetValue(inst))
else None
let (|Method|_|) name (inst : obj) =
let fi = inst.GetType () .GetMethod (name, AllBindingFlags)
if fi <> null
then Some (fi)
else None
let (|Property|_|) name (inst : obj) =
let fi = inst.GetType() .GetProperty (name, AllBindingFlags)
if fi <> null
then Some(fi.GetValue(inst, null))
else None

let rm = new Person("Rick", "Minerich", 29)
// Does it have a first name? Get the value if it does
let message = match rm with
| Property "FirstName" value ->
"FirstName = " + value.ToString/()
| _ -> "No FirstName to be found"
System.Console.WriteLine (message)

This is sometimes known as duck typing (“If it walks like a duck and talks like a duck, treat it as a
duck”) in dynamic languages such as Python and Ruby.

This is also where AND patterns, briefly mentioned in the section “AND, OR Patterns” can be use-
ful; if the object in question needs both a FirstName property and a LastName property before it
can be considered a good object to work with, then the AND in the pattern-match will require both
properties to be there before evaluating the action after the arrow:

let rm = new Person("Rick", "Minerich", 29)
// Does it have a first name AND a last name?
let message = match rm with
| Property "FirstName" fnval &
Property "LastName" lnval ->
"Full name = " + fnval.ToString() +
" " + lnval.ToString ()
| Property "FirstName" value ->

"Name = " + value.ToString()
| Property "LastName" value ->
"Name = " + value.ToString()

| _ >
"No name to be found"
System.Console.WriteLine (message)

Partial-case active patterns can obviously be used in a variety of other scenarios beyond Reflection; one
such area is in processing XML documents, where judicious use of active patterns can act as a struc-
tured and type-safe form of XPath query. (More on using XML with F# can be found in Chapter 20.)

Multi-Case

The previous Reflection-oriented example suffers from the fact that the match types a Type and uses
that to try and find a match in top-down order, which succeeds the first time and then quits the rest
of the match expression. This is fine if we want to test to see if a particular type supports a particular

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

100 [XCHAPTER6 PATTERN MATCHING

operation, but if the goal is to break down a given type into its constituent parts (such as what we see
with tools such as ILDasm or Reflector), then the multi-case active pattern comes into play:

let (|Property|Method|Field|Constructor|) (mi : MemberInfo) =
if (mi :? FieldInfo) then
Field(mi.Name, (mi :?> FieldInfo).FieldType)
elif (mi :? MethodInfo) then
Method (mi.Name, (mi :?> MethodInfo) .ReturnType)
elif (mi :? PropertyInfo) then
Property (mi.Name, (mi :?> PropertyInfo).PropertyType)
elif (mi :? ConstructorInfo) then
Constructor ("", mi.DeclaringType)
else
failwith "Unrecognized Reflection type"

Again, this example assumes that System.Reflection has been opened already
in the code, as discussed in Chapter 11.

In this case, we use dynamic type tests (see Chapter 9 for details on downcasting) to determine what
subtype the MemberInfo instance is and extract values from that subtype for use.

Syntactically, notice that the multi-case active pattern includes all the possible result values
within the banana clips, and the lack of the wildcard character implies that when this func-

tion is invoked, the results must, somehow, match into one of those values (Property, Method,
Field, or Constructor in the previous example). The data that should be returned for use in the
pattern-match is gathered into a tuple under the pattern-match name (Property, Method, and
so on) and handed back.

When used, the multi-case active pattern (like all pattern-matching constructs) can bind values into
a local value binding, which in this case, using the preceding definition, makes it relatively easy to
extract the name and type of the reflective element in question:

for p in typeof<Person>.GetMembers (Al1BindingFlags) do
match p with
| Property(nm, ty) ->
System.Console.WriteLine (
"Found prop {1} {0}", nm, ty)
| Field(nm, ty) ->
System.Console.WriteLine (
"Found f1d {1} {0}", nm, ty)
| Method(nm, rt) ->
System.Console.WriteLine (
"Found mth {1} {0}(...)", nm, rt)
| Constructor(_, _) ->
System.Console.WriteLine ("Found ctor")

Having done that, however, something jarring appears: Under the current definition of the multi-case
pattern match, we lose the parameters from the method, and the constructor doesn’t actually have a

Active Patterns [x101

name or a return type, per se. This is because as written, the multi-case pattern match assumes that
in each case, we want to return a string and a System. Type tuple.

Fortunately, the multi-case active pattern doesn’t require that each possibility return the same type;
it returns a Choice<> type, essentially creating a large tagged union type out of each of the poten-
tial types returned by the individual matches. So we can have the Constructor tuple return just

the parameters to the constructor, and the Method tuple return the name, the return type, and the
parameters to the method:

let (|Property|Method|Field|Constructor|) (mi : MemberInfo) =
if (mi :? FieldInfo) then
Field(mi.Name, (mi :?> FieldInfo).FieldType)
elif (mi :? MethodInfo) then
let mthi = (mi :?> MethodInfo)
Method (mi.Name, mthi.ReturnType, mthi.GetParameters())
elif (mi :? PropertyInfo) then
let pi = (mi :?> PropertyInfo)
Property (pi.Name, pi.PropertyType)
elif (mi :? ConstructorInfo) then
let ci = (mi :?> ConstructorInfo)
Constructor (ci.GetParameters())
else
failwith "Unrecognized Reflection type"

This now gives us better data-extraction capabilities when displaying the individual parts of the
type:

let pt = (new Person("", "", 0)).GetType()

let AllBindingFlags =
BindingFlags.NonPublic ||| BindingFlags.Public |||
BindingFlags.Instance ||| BindingFlags.Static

for p in pt.GetMembers (Al1BindingFlags) do
match p with
| Property(nm, ty) ->
System.Console.WriteLine (
"Found prop {1} {0}", nm, ty)
| Field(nm, ty) ->
System.Console.WriteLine (
"Found fld {1} {0}", nm, ty)
| Method(nm, rt, parms) ->
System.Console.WriteLine (
"Found mth {1} {0}(...)", nm, rt)
\ Constructor (parms) ->
System.Console.WriteLine ("Found ctor")

The huge advantage to this approach, of course, is that as this code seeks to support additional
Reflection types (events, delegates, generics, and so on), the active-pattern can simply be extended to
add those additional types, and using them simply follows the traditional pattern-match style.

The multi-case active pattern is sometimes called data decomposition because it essentially allows
an object (in this case, System. Type instance) to be broken down (decomposed) into its constituent
parts and processed.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

102 [XCHAPTER6 PATTERN MATCHING

SUMMARY

Pattern-matching is a fundamental part of the F# language, and of functional languages in general,
that it should be considered to be absolutely critical to understanding any code written in F#. It
provides well beyond the basic switch/case multi-if capabilities that C# or Visual Basic provide, to
give developers the ability to do data decomposition and break complex data structures down into
smaller parts for analysis and extraction.

PART Il
Objects

» CHAPTER 7: Complex Composite Types
» CHAPTER 8: Classes

» CHAPTER 9: Inheritance

» CHAPTER 10: Generics

» CHAPTER 11: Packaging

» CHAPTER 12: Custom Attributes

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Complex Composite Types

WHAT'’S IN THIS CHAPTER?

Understanding type abbreviations
Working with enums
Creating discriminated unions

Understanding structs

@ © 6 o6 ©

Working with record types

Complex composite types serve as a bridge between the simple composite types explored in
Chapter 35, such as tuples, options, and the collection types (list, array, sequence, set, and
map), and the more traditional class types explored in Chapter 8. Unlike the simple composite
type made up of multiple elements of a single type, the complex composite type is marked by
the multiple parts that form the complex composite type, such as individual elements made up
of other types.

TYPE ABBREVIATIONS

One of the drawbacks to tuples is that the tuple, in its basic form, remains unnamed — lexically
speaking, it’s harder to talk about passing string * string * int * float types around
than it is to talk about passing around instances of Employee.

Fortunately, F# alleviates this problem (for more than just tuples) by allowing for type abbre-
viations, which actually are nothing more than name declarations for existing type names:

type Menultem =
string * string * float

type RestaurantMenu =
Menultem list

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

106 [XCHAPTER7 COMPLEX COMPOSITE TYPES

In all other respects, the types behave as they’ve done normally:

} let diner : RestaurantMenu = [

("Grand Slam", "Two eggs, two bacon, three hotcakes",2.99);
("Chicken strips", "Five strips and sauce", 3.99)

Available for]

"&‘,’ﬁ:;‘?gg,ﬁ" for (name, desc, price) in diner do

System.Console.WriteLine("{0} costs {1}", name, price)

Code snippet ComplexCompositeTypes.fs

It’s important to note that left to its own devices, the F# compiler will infer the diner instance to be
astring * string * float list type, nota RestaurantMenu type, which is why the type anno-
tation is necessary on the declaration in this sample.

It’s also important to note that no new functionality has been introduced into the system, only a
new name for types that were already present. The type is “erased” during compilation, so any
attempt to find the type abbreviation name at runtime (via Reflection, for example) will fail. The
type abbreviation simply adds a degree of readability to the source code.

Type abbreviations can also work on types other than tuples; if, for example, experience yields a
better name for unsigned 32-bit integers, they can be named as such:

type ui32 = System.UInt32

However, blatantly renaming existing types should be done with care — mindlessly renaming types
can render code less readable, rather than the opposite.

ENUM TYPES

To create the C# or Visual Basic equivalent of the enumerated type, F# uses some slightly different
syntax than what’s been seen before; because this code introduces a new type into the program, the
keyword type is used, and the various possibilities of the enumerated type are then listed in a form
reminiscent of the pattern-match syntax (explored in Chapter 6):

type Soda =
| Coke =1
| DietCoke = 2
| SevenUp = 3

Unlike the C# or Visual Basic enumerated type, to create an enum, F# requires that each possible
case be explicitly assigned a value — this is because in the CLR’s view, an enumerated type is
simply a placeholder over a more basic type, usually an unsigned int32. (F# has a better type,
and nicer syntax, for its own notion of an enumerated type, called a discriminated union

type, explored next.)

Each case in the enumerated type must be a constant value of one of the types permitted to underlie
a .NET enumeration: sbyte, byte, int16, uint16, int32, uint32, int64 or uint64, or char. Any attempt
to use a type outside that list will result in an error. More important, each of the cases in the enum
must all be of the same type.

Enum Types [x107

When used, the F# compiler insists on a syntax that’s more or less commensurate with the syntax
used for enum types in C# or Visual Basic, namely, that each use must be explicitly qualified with
the type name when accessing one of its values:

let drink = Soda.DietCoke
Attempts to use just the value name, such as Dietcoke directly, will fail. In particular, when used

in a pattern-match construct, attempts to use the values directly will generate a warning, but more
important, won’t produce the results desired:

let drink = Soda.DietCoke
\) let message =
match drink with
Available for | Coke -> "Ah, so refreshing!"
download on . N R
Wrox.com \ DietCoke -> "Just one calorie!
| _ -> "Bleah"

System.Console.WriteLine (message)

Code snippet ComplexCompositeTypes.fs

When this code is run, regardless of what the value in drink is, the first match always succeeds.
Written properly, the pattern-match looks like

let drink = Soda.DietCoke
let message =
match drink with
| Soda.Coke -> "Ah, so sweet!"
| Soda.DietCoke -> "Just one calorie!"
| _ -> "Bleah"
System.Console.WriteLine (message)

@ For those who are curious, the reason the F# compiler knows to enforce

this type-qualified access is because the F# compiler emits an attribute, the
RequiresQualifiedAccess atiribute, on the Soda type. This is an F#-specific
attribute and is only recognized by the F# compiler; for more details on it, see
Chapter 12.

Because the underlying values beneath an enumerated type is another .NET atomic value, and
because the other .NET languages permit it, F# allows for conversion from the enumerated type to
its underlying value by prefixing the enumerated value instance with the primitive type:

let rawValue = int Soda.DietCoke

Converting it back again uses the enum<> syntax:

let rawInt = 2
let unknownDrink = enum<Soda> (rawInt)
let message =

match unknownDrink with

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

108 [XCHAPTER7 COMPLEX COMPOSITE TYPES

| Soda.Coke -> "Ah, so sweet!"

| Soda.DietCoke -> "Just one calorie!"

| _ -> "Bleah"
System.Console.WriteLine (message)

Doing this, however, is relatively dangerous, just as it is in C# or Visual Basic code, because the
original value (rawInt in the preceding example) can be any acceptable 32-bit integer value, and
the calculated enumerated type won’t necessarily match up against the integer passed in. This
makes the enumerated type “imperfect,” in that it’s possible for the enumerated type to hold a
value outside the acceptable list of values for it:

let rawInt = 20
‘) let unknownDrink = enum<Soda> (rawlInt)

: let message =

Available for match unknownDrink with

download on

Wrox.com | Soda.Coke -> "Ah, so sweet!"
| Soda.DietCoke -> "Just one calorie!"
| Soda.SevenUp -> "Clear soda!"
| _ -> failwith "This should never happen!"

System.Console.WriteLine (message)

Code snippet ComplexCompositeTypes.fs

Unfortunately for the programmer who wrote this code, what should never happen, will.

For those cases where the values want to combine in a flags-style combination of values (such
as summer camp, where campers routinely learn to mix sodas together in what was then called a

“suicide soda”), F# permits the use of the CLR System.Flags attribute to the type declaration and
hexadecimal values for the individual cases:

[<System.Flags>]
type SuicideSoda =
| Coke = 0x0001
| DietCoke = 0x0002
| SevenUp = 0x0004
| Grenadine = 0x0008

This allows the F# programmer the complete freedom to create their perfect drink:

let perfectDrink = SuicideSoda.Coke ||| SuicideSoda.Grenadine

The values that make up the perfect drink can then be extracted using typical bitmask coding:

System.Console.WriteLine ("It contains Coke? {0}",
(1f perfectDrink &&& SuicideSoda.Coke = SuicideSoda.Coke
then "true" else "false"))
System.Console.WriteLine ("It contains DietCoke? {0}",
(1f perfectDrink &&& SuicideSoda.DietCoke =
SuicideSoda.DietCoke then "true" else "false"))

Because the enumerated types created here are .NET-compatible enumerated types, all the meth-

ods defined by System.Enum are also accessible for them, which can sometimes simplify working
with them:

let enumNames = System.Enum.GetNames (typeof<Soda>)
let enumValues = System.Enum.GetValues (typeof<Soda>)

Discriminated Union Types [x109

Although certainly an acceptable style of programming, using enumerated types in F# pale in com-
parison to discriminated union types, and as a result, enumerated types are usually relegated to
those situations where F# needs to interoperate against the remainder of the NET framework.

In general, F# developers will not write many of these “old-school” enumerated types except for
scenarios where the F# code needs to be easily accessible from other .NET languages; for most pur-
poses, the discriminated union, described next, is vastly more powerful and flexible.

DISCRIMINATED UNION TYPES

Discriminated unions are a particular kind of type whose possible values are limited to a bound set
of possible values, similar to how an enumerated type works in C# or Visual Basic, but with some
greatly enhanced functionality. Unlike an enumerated type in C# or Visual Basic, a discriminated
union can define not only a bound set of values, but a set of types, as well, as acceptable values.

Consider, for example, the notion of “color.” Color values can be seen in a variety of different for-
mats: red/green/blue (RGB) triplet values, cyan/yellow/magenta/black (CMYK) quadruplet values,

one of sixteen possible basic colors (red, blue, dark red, dark blue, and so on), and so on. Trying to
capture all these different possibilities is difficult in C#, because each of the different kinds of rep-

resentations must be modeled as a separate class, all inheriting from a base Color class whose only
purpose is to act as a placeholder for the various derived types.

In F#, however, such a type naturally falls within the discriminated union’s capabilities. To begin
with, it’s fairly easy to capture the idea of a Color being one of several predefined values:

type Color =
| Black
| Blue
| cyan
| Gray
| Green
| Magenta
| DarkBlue
| Red

| white

| Yellow

And as might be expected, it’s relatively easy to use, particularly because the F# type inferencer can
be a bit more sure about how discriminated union values are used, compared to enumerated types:

let ¢ = Black
System.Console.WriteLine(c)

Unfortunately, this produces rather disappointing output (CompositeComplexTypes+Color, assum-
ing this code is compiled from “CompositeComplexTypes.fs” and not run from the interactive
window or FSlL.exe), so it’s fortunate that the discriminated union works more nicely with pattern-
matching than the enumerated type does:

let message =

match ¢ with

| Black -> "Black"

| _ -> "Not black"
System.Console.WriteLine (message)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

110 [XCHAPTER7 COMPLEX COMPOSITE TYPES

However, as any interior design student will state, there are far more colors in the world than

just these nine, and although it might be an interesting exercise to try and list them all in a single
discriminated union case, a quick trip to the local art shop (or grocery store) to pick up a pack of
128-color crayon box will likely discourage that attempt fairly quickly. (Is Seashell really a color?)
Fortunately, the discriminated union allows you to not only define discrete elements within it, such
as previously shown, but also some “type cases” where data elements can be attached to it:

type Color =
| Black
| Blue
| Cyan
| Gray
| Green
| Magenta
| DarkBlue
| Red
| white
| Yellow
| RGB of int * int * int
| CMYK of int * int * int * int

Now, in addition to having the basic colors, the discriminated union permits users to describe colors
in a variety of different color representation schemes:

let ¢ = RGB(0,0,0)
And again, the discriminated union works exceedingly well in pattern-matching, making it relatively

easy to produce nice strings regardless of whether the basic color name or its corresponding RGB or
CMYK value were used:

match ¢ with
‘) Black | RGB(0,0,0) -> "Black"

White | RGB(255, 255, 255) -> "White"

Available for " "
download on Red | RGB(255, 0, 0) -> "Red
Wrox.com Blue | RGB(0, 0, 255) -> "Blue"

|
|
|
|
| Cyan | RGB(64, 128, 128) -> "Cyan"
| Gray | RGB(192, 192, 192) -> "Gray"
| Green | RGB(0, 255, 0) -> "Green"
| Magenta -> "Magenta"
| Yellow -> "Yellow"
| RGB(r,g,b) ->
System.String.Format (" ({0}, {1},{2})",
r, g, b)
| CMYK(c,m,y, k) ->
System.String.Format ("[{0}, {1}, {2},{3}1",
c,m,y, k)

Code snippet ComplexCompositeTypes.fs

Actually, this is probably code that should “stay with” the discriminated union type, as a way of
producing the RGB triplet (as an int * int * int tuple) on demand; fortunately, the discrimi-
nated union, like the struct, can have custom methods defined on it, using the syntax described in
Chapter 8:

Discriminated Union Types [X111

type Color =
| RGB of int * int * int
| CMYK of int * int * int * int
| Black
| Blue
| Green
| Red

| White

| cyan

| Gray

member this.RGBValue =
match this with

| RGB(r,g,b) -> (r, g, b)

| Red -> (255, 0, 0)

| Green -> (0, 255, 0)

| Blue -> (0, 0, 255)

| Black -> (0, 0, 0)

| White -> (255, 255, 255)

| cyan -> (64, 128, 128)

| Gray -> (192, 192, 192)

| CMYK(c,m,y, k) ->

failwith "I have no idea how to do that"

Similar methods to return the CMYK value of a given color can be imagined. (Returning the string
representation, the job of the Tostring () method, is deferred until overriding methods from base
classes — in this case, System.0Object — is covered in Chapter 9.)

It’s important to note that the F# compiler can help with pattern-matching, evaluating to make
sure that all possible matches are met in the match clauses, something that the compiler cannot
do with enumerated types because of their “incompleteness” (meaning that an enumerated type
can be spun out of thin air, because they are not much more than convenient names over constant
numeric values).

Discriminated unions are also exceedingly common in defining tree-based structures, such as is
commonly used in language design and parsing, or in any hierarchical structure.

type BinaryTree =
| Node of BinaryTree * obj * BinaryTree
| Empty

This is because, as demonstrated, the discriminated union allows for definitions of cases that include
recursive definitions, such as the Node being a three-part tuple, the data element being stored and
the left and right nodes that could be either an additional Node or Empty. Walking this tree becomes
a fairly easy exercise, using either the member-method syntax described in Chapter 8 or the module-
level function syntax described in Chapter 13:

type BinaryTree =

| Node of obj * BinaryTree * BinaryTree
| Empty
member bt.Contents =

match bt with

| Empty -> ""

| Node(data, left, right) ->

"(" + left.Contents + ")" +

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

112 [XCHAPTER7 COMPLEX COMPOSITE TYPES

":" + data.ToString() + ":" +
"(" + right.Contents + ")"

Using the tree can then be relatively easy:

let authorTree =
Node ("Ted",
Node ("Aaron",
Empty,
Empty) ,
Node ("Talbott",
Node ("Rick", Empty, Empty),
Empty))
System.Console.WriteLine (authorTree.Contents)

When combined with higher-order functions (described in Chapter 13), it becomes positively trivial
to operate on the elements in the tree:

type BinaryTree =
| Node of obj * BinaryTree * BinaryTree
| Empty
member bt.Contents =
match bt with
| Empty -> ""
| Node(data, left, right) ->
"(" + left.Contents + ")" +
":" + data.ToString() + ":" +
"(" + right.Contents + ")"
member bt.iter (fn : (obj) -> unit) =
match bt with
| Empty -> ()
| Node(data, left, right) ->
left.iter (fn)
fn(data)
right.iter (fn)

In essence, the iter method does a left-recursive-descent traversal of the tree:

authorTree.iter (System.Console.WriteLine)

which, given the previous authorTree example, would print Aaron, Ted, Rick, and Talbott. Right-
recursive-descent or other paths through the tree could be added, if wanted.

Note that the F# compiler takes the preceding code and turns it into almost precisely the same con-
struct that the object-oriented developer would ask for: The BinaryTree type becomes an abstract
base class, with two subclasses defined, Node and Empty, so that either can be passed where a
BinaryTree type is expected. Additionally, an Ts property is inherited from the base class so that
given any instance of BinaryTree, we can call TsNode or IsEmpty to determine if it is one of those
two types. On top of that, because the Empty case holds no additional data, it can be represented
via a singleton instance, and the F# compiler takes care of that by creating a single instance hiding
behind a static property called, not surprisingly, Empty.

Remember that most of the time, the F# developer doesn’t need to know all this detail about how
the discriminated union matches up against the underlying CLR — in fact, we could argue that

Discriminated Union Types [X113

having all these details in mind distracts the F# developer. Mentioning this serves two purposes:
One, because seeing how the language construct matches up against the CLR can sometimes offer
insight into its use, and two, because it’s an example of how the F# language wants to “hide” the
physical details of how things compile from the developer to reduce the amount of complexity the
developer must keep in mind.

In what will probably be viewed by some object-oriented purists as a heretical assertion, some of
the simpler hierarchical structures traditionally represented in object-oriented languages using
inheritance-based trees of classes can be more easily modeled using a discriminated union:

type Employee =
| Grunt of string
\ Manager of string * Employee list
member e.Name =
match e with
| Grunt(n) -> n
| Manager(n, _) ->n

Because this is a discriminated union makes it trivial to determine how many employees a given
Employee has working for them, with Grunts returning an empty list (because, after all, if one is a
grunt, one has no direct reports):

type Employee =
| Grunt of string
| Manager of string * Employee list
member e.Name =
match e with
| Grunt(n) -> n
| Manager(n, _) ->n
member e.Subordinates =
match e with
| Grunt(_) -> []
| Manager(_, es) -> es

This can be even simpler using a judicious application of recursion, higher-order functions, and
pattern-matching to make it absolutely trivial to calculate the size of a given Employee’s empire:

type Employee =
| Grunt of string
\ Manager of string * Employee list
member e.Name =
match e with
| Grunt(n) -> n
| Manager(n, _) ->n
member e.Subordinates =
match e with
| Grunt(_) -> []
| Manager(_, es) -> es
member e.Empire =
match e with
| Grunt(_) -> []
| Manager(_, es) ->
List.collect
(fun (e : Employee) -> e.Empire) es

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

114 [XCHAPTER7 COMPLEX COMPOSITE TYPES

To be straightforward about it, any case where a traditional object-oriented developer would con-
sider using a Composite pattern (from Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard, Helm, Ralph Johnson, and John Vlissides, also known as the
Gang-of-Four book) can most likely be replaced by a discriminated union and result in a much
smaller code base.

Discriminated unions also make the State pattern (again, from the Gang-of-Four book) trivial to
code and implement:

type State =
| New
| Opened
| Closed
member s.Open() =
match s with
| New -> Opened
| Opened ->
failwith "Error to Open an Opened state"
| Closed -> Opened
member s.Close() =
match s with
| New ->
failwith "Error to Close a New state"
| Opened -> Closed
| Closed -> Closed

And again, thanks to the compiler-checking the F# compiler can do in the pattern-matching con-
structs, if a new state is added to the discriminated union, any pattern-matching code that fails to
incorporate that new state immediately triggers a compiler error.

STRUCTS

Structs, also known within the .NET lexicon as “value types,” are not objects in the traditional
sense. Instead, value types are types that intend to be hosted inside other objects, or are simple
enough that they represent a real, tangible value, a la numbers. All the NET primitive types are
value types — this was a deliberate design decision on the part of the .NET team, specifically so that
the .NET environment can avoid the bifurcated type system that Java has, yet still avoid the over-
head (such as garbage collection) that accompanies full objects.

For more on .NET value types, see http: //msdn.microsoft.com/en-us/
library/34yytbws (VS.71) .aspx.

To create a value type in F#, the type keyword again comes into play, like so, for a value type that
intends to represent a Cartesian point on a 2D graph:

[<Struct>]

type Point =
member this.X = 0
member this.Y =

|
o

Structs [X115

A couple of things need to be highlighted here. First, the F# custom attribute struct, applied to

the type declaration, is what defines this is as a .NET value type — if it is left off, the type will be
defined as a full-fledged class, implicitly inheriting from System.0bject (as all good classes do), as
opposed to being a value type and implicitly inheriting from System.ValueType and having the nec-
essary CLR support to treat it as a value type (such as living on the stack when declared as a local
variable in a method, and so on).

Second, this type has two available members, x and v, which are, in this case, defined as return-
ing the constant value 0. These will be compiled into read-only properties on the value type,
without any further work required on the part of the F# developer — this is in support of Fi#’s
desire to free the .NET developer from having to worry about low-level “physical” details such
as fields-versus-properties where such details are irrelevant. Notice as well the this prefix to
the two-member declarations — this self-identifier serves the same purpose as this in C# or Me
in Visual Basic, except that F# allows the developer to choose what that prefix should look like.
Thus, we can rewrite the previous code like so, if we think it makes the code more readable:

[<Struct>]

type Point =
member pt.X = 0
member p.Y = 0

The important thing to recognize is that the F# compiler “scopes” the self-identifier name to the
member declaration itself, so if it makes sense to have different self-identifier names for different
members, go for it. (You’ll have a hard time convincing other F# developers that this is a good idea,
mind you.) Developers coming from a C# background are advised to continue to use this as the
common self-identifier prefix, and those coming from a Visual Basic background are advised to
continue to use me. (Developers coming from a Perl background are probably beyond help.)

Using the Point value type is straightforward:

let origin = new Point ()
System.Console.WriteLine ("Point = {0},{1}", origin.X, origin.Y)

As it stands, however, the Point is not a useful value type, because it lacks any way to set the values
of the X and Y coordinates of the graph when constructed. Normally, this is done via a constructor:

[<Struct>]

type Point(x : int, y : int) =
member pt.X = x
member pt.Y =y

Now things begin to really diverge from the other .NET languages; in this case, the “primary
constructor” is declared inline alongside the type name itself, and it accepts two parameters,
both of them 32-bit signed integer values. Notice that these parameters are then used in their
respective property member; silently, the F# compiler has captured the parameters to the con-
structor and stored the values into field names of the same names (x and v, respectively) for use
later in the type.

Using the Point type with its new constructor is simple:

let notOrigin = new Point (12, 12)
System.Console.WriteLine ("Point = {0}, {1}",
notOrigin.X, notOrigin.Y)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

116 [XCHAPTER7 COMPLEX COMPOSITE TYPES

Note that because this is a value type, and because the CLR requires it, a no-argument constructor
is always defined for a value type:

let origin = new Point ()
System.Console.WriteLine("Point = {0},{1}", origin.X, origin.Y)

This has two implications — it means that every value type created has a no-argument constructor,
regardless of whether we defined one, and it means that we cannot define one of our own, even if
we want to. (The CLR insists that the value type no-argument constructor does a zero-bit-pattern
initialization on the entire contents of the value type. If we could define our own no-argument con-
structor, that constraint might be violated.)

Developers who experiment with the Point type as defined so far will notice that the Point type is
a read-only value; attempts to change the value of x or v will result in a compiler error. Normally,
this is what’s preferable for a value type, because not only does that help enforce a certain amount of
thread-safety, but frankly, it just makes sense — we don’t change the number 1 to hold a new value
but instead manipulate it in some way and store that new value instead:

let newPoint = new Point((notOrigin.X - 6), (notOrigin.Y) - 6)
System.Console.WriteLine ("Point = {0}, {1}",
newPoint.X, newPoint.Y)

However, sometimes the .NET developer insists that the value type must have mutable semantics,
and F# supports this via the use of the mutable modifier:

[<Struct>]

type MutPoint =
val mutable X : int
val mutable Y : int

Doing so, however, means that the value type cannot have a custom constructor. F# also punishes
the mutable-preferring developer by forcing them to use the mutable keyword when constructing
the instance of the mutable Point, and by requiring a different syntax for doing destructive updates
(what C# and Visual Basic developers call “assignments”) to set the values of the x and Y members
of the value type:

let mutable mutPt = new MutPoint ()

mutPt.X <- 10

mutPt.Y <- 10

System.Console.WriteLine("Point = {0}, {1}",
mutPt.X, mutPt.Y)

Note that the F# compiler generates wildly different code when using this form — the x and Yy mem-
bers will now be generated as publicly accessible fields, rather than read/write properties. (Syntax
for explicitly defining x and v as read/write properties is given in Chapter 8.)

All this is designed to help the F# developer use immutable objects and types “by default,” as
described in more detail in Chapter 14, while still permitting access to the “old ways” of doing
things in .NET. In general, the budding F# developer would be well-advised to adopt the immutable
approach wherever possible, as soon as possible.

By the way, technically we lied to you earlier about the custom attribute [<Struct>] making this
type declaration a value type; if you choose, you can use the alternative F# syntax:

Structs [X117

type AnotherPoint(x : int, y: int) =
struct
member pt.X = x
member pt.Y
end

1
<

Some developers might consider this to be more readable than the attribute-annotated version,
whereas some others prefer the earlier syntax. Use whichever aesthetically appeals; as of this writ-
ing, however, it seems that the attribute-based version is more widely accepted among F# developers.

Structs can have methods, properties, statics, and other member types defined on them, as
described in Chapter 8, though generally value types should be relatively “lightweight” and sup-
port only those operations that make it easier to use the value type. In addition, although structs
cannot inherit from other base classes (a restriction enforced by the underlying CLR), they can
override methods defined in base classes; given that F# already does a good job for Equals () and
GetHashCode (), the only member left to override would be Tostring (), and the syntax for doing
so is described in Chapter 9. As a preview, however, it appears here, along with the full definition
of Point:

[<Struct>]
type Point(x : int, y : int) =
member pt.X = x
member pt.Y =y
override pt.ToString() =
System.String.Format (" ({0}, {1})", x, V)

Value Type Implicit Members

Experienced .NET developers can recall that a value type has several members it inherits from
System.Object through system.valueType; although we defer a full discussion of inheritance and
overriding methods until Chapter 9, it is important to note that the value type created by F# obeys
the general contract for value types and defines an Equals () method that automatically performs
structural equality comparison:

let a = new Point (12, 12)
let b = new Point (12, 12)
System.Console.WriteLine("a = b? {0}",
if (a = b) then "yes" else "no")
System.Console.WriteLine("a.Equals(b)? {0}",
if (a.Equals(b)) then "yes" else "no")

From this, it makes sense that F# can also determine inequality just as easily as it can equality:

System.Console.WriteLine("a <> b? {0}",
if (a <> b) then "yes" else "no")

However, F# can also do some inferred relativity comparisons, as well:

let ¢ = new Point(6, 12)
let d = new Point (18, 12)
let e = new Point (12, 6)
let £ new Point (12, 18)

System.Console.WriteLine("a > c? {0}",

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

118 [XCHAPTER7 COMPLEX COMPOSITE TYPES

if (a > ¢) then "yes" else "no") // yes
System.Console.WriteLine("a > d? {0}",

if (a > d) then "yes" else "no") // no
System.Console.WriteLine("a > e? {0}",

if (a > e) then "yes" else "no") // yes
System.Console.WriteLine("a > f? {0}",

if (a > f) then "yes" else "no") // no
System.Console.WriteLine("a < c? {0}",

if (a < c¢) then "yes" else "no") // no
System.Console.WriteLine("a < d? {0}",

if (a < d) then "yes" else "no") // yes
System.Console.WriteLine("a < e? {0}",

if (a < e) then "yes" else "no") // no
System.Console.WriteLine("a < £? {0}",

if (a < f) then "yes" else "no") // yes

It can do this because the F# compiler defines the value type to implement the standard .NET inter-
face System.Collections.IComparer, and uses a “generic comparer” defined in Microsoft
.FSharp.Core.LanguagePrimitives to do the comparison against each of the fields in the value type
one-by-one, returning “greater” or “lesser” as soon as it finds a discrepancy between the two value
types being compared. For many types, such as our Point example, this will be sufficient. In general,
though, relying on the built-in comparison logic is less desirable than defining explicitly the relation-
ship between Points, so if this kind of relational comparison is desired, then those operators should
be defined explicitly on the Point, as described in Chapter 9.

For the record, the generated value type also implements the standard .NET interface system.
Collections.IEqualityComparer to make the F# value types “play nicely” when stored in NET
Collections.

Similarly, F# defines a GetHashCode () method that takes the internal bit-patterns of the value type
into account when calculating the hashcode for the value type.

System.Console.WriteLine("a.GetHashCode() = {0}",
a.GetHashCode())
System.Console.WriteLine ("b.GetHashCode() = {0}",

b.GetHashCode ())
System.Console.WriteLine("a hash = b hash? {0}",
a.GetHashCode() = b.GetHashCode()) // true

Note that this implies that if the internal contents of the value type change between calls to
GetHashCode (), the returned hashcode could be different — yet another reason to prefer immutable
value types.

Structs and Pattern-Matching

In general, structs don’t play well with pattern-matching; when attempting to use a struct in what
would seem to be the most natural manner in a pattern-match, the compiler will complain:

let message =
match a with
| Point(0, 0) -> "You're at the origin!"
| Point (12, 12) -> "You're at 12, 12!"
| Point(_, _) -> "Who knows where you are?"
// "The pattern discriminator 'Point' is not defined"

Record Types [X119

In general, the easiest way to make structs work with pattern-matching is to break out the mem-
bers of the value type into a tuple (or to a different primitive type, if the value type is easily convert-
ible to an underlying primitive type, such as an int32) and match on that, like so:

let newPoint = new Point (0,0)
let message =

match (newPoint.X, newPoint.Y) with

| (0, 0) -> "You're at the origin!"

| (12, 12) -> "You're at 12, 121"

| (_, _) -> "Who knows where you are?"
System.Console.WriteLine (message)

Alternatively, an active pattern rule can be defined describing how to convert to the value type dur-
ing the pattern-match, as described in Chapter 6:

let (|Point]|) (x : int, y : int) (inPt : Point) =
inPt.X = x && inPt.Y =y
let message =
match newPoint with
| Point(0, 0) true -> "You're at the origin!"
| Point (12, 12) true -> "You're at 12,12!"
\ _ -> "Who knows where you are?"
System.Console.WriteLine (message)

Different F# developers prefer one or the other, depending on the aesthetics of the situation.

RECORD TYPES

The record type sits about halfway between a tuple and a classic “class” type, as defined in classical
object-oriented languages. The tuple is a lightweight bundling of data, but the tuple suffers from the
fact that the members of the tuple are unnamed, and the type as a whole is unnamed:

let ted = ("Ted", "Neward", 38)
let aaron = ("Aaron", "Erickson")
let rick = ("Rick", "Minerich", "I'd rather not say")

As described in Chapter 5, each of these is an instance of an entirely different type, because the con-
tents of the tuple are different. We can fix this by creating a single-case discriminated union to give
the tuple type a name, and making it easier to ensure that the various authors at least have the same
basic structure:

type Author =
| Author of string * string * int

let ted = Author("Ted", "Neward", 38)
let aaron = Author ("Aaron", "Erickson", 35)
let rick = Author ("Rick", "Minerich", 0)

But unfortunately, this doesn’t do much to hide that the data is held in a tuple, and the lack of any
sort of per-atom “name” to the constituent elements in the tuple mean that misunderstandings are
still possible:

let talbott = Author("Crowell", "Talbott", 35)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

120 [XCHAPTER7 COMPLEX COMPOSITE TYPES

Perhaps even more disturbingly, trying to extract one element out of the tuple can be painful, such
as when we want to display the authors’ first names:

let authors = [
Author ("Ted", "Neward", 38);
Author ("Aaron", "Erickson", 35);
Author ("Rick", "Minerich", 0);
Author ("Crowell", "Talbott", 35)
1
for a in authors do
match a with
| Author (first, last, age) ->
System.Console.WriteLine("Hello, {0}", first)

As useful and powerful as pattern-matching is, we’re not so enamored of it that we want to have to
use it every time we want to extract a value out of the underlying tuple. Granted, we could define
properties on the discriminated union to do this for each of the elements in the tuple, like this:

type Author =

| Author of string * string * int
member a.FirstName =

match a with

| Author (first, _, _) -> first
member a.LastName =

match a with

| Author(_, last, _) -> last
member a.Age =

match a with

| Author(_, _, age) -> age

but this is starting to look tedious and error-prone, and simply defining the author as a value type
starts to look a lot simpler by comparison.

What we’d actually like is a simple structure like the tuple but one we can put a name to and whose
constituent elements we can also name:

type AuthorRecord =
{ FirstName : string
LastName : string
Age : int }

This is what F# calls a “record type,” and in many respects, it looks like a standard .NET class.
Despite that similarity, the record type has some advantages over a standard class, most notably in
how it is used:

let ted = { FirstName = "Ted"; LastName = "Neward"; Age = 38 }
System.Console.WriteLine("Hello, {0}", ted.FirstName)

Unlike a traditional class, the record type is not identified as such simply because the programmer
uses the type name in a “new” expression, but because the F# compiler looks at the individually
named elements inside the bracketed expression and realizes that they line up one-for-one with the
declared record type. This means that if the developer forgets to provide one of those named ele-
ments, it represents a compiler error:

let aaron = { FirstName = "Aaron"; LastName = "Erickson" }

Record Types [x121

The compiler will reject the preceding code with an error: No Assignment Given for Field ‘Age’ of
Type ‘ComplexCompositeTypes. AuthorRecord’. This gives us the type-safety that the tuple type
leaves out, plus we get an added benefit:

let talbott = {
LastName = "Crowell"; FirstName = "Talbott"; Age = 35 }

Because the fields are identified by name, they can be initialized in any order, so long as all the fields
are eventually present in the construction.

There is a note of caution here, however: Because we’re relying on the F# compiler’s capability to
infer the record type out of the fields being used, if there are two record types that have the same
constituent fields, the compiler will have a hard time telling the two apart:
type ProgrammingLanguage =
{ Name : string
YearsInUse : int }
type SpokenLanguage =
{ Name : string
YearsInUse : int }

Unfortunately, the compiler won’t always tell the developer when an ambiguity is present — it may
simply pick the first (or the last) of the record types that match:

let english = { Name = "English"; YearsInUse = 1000 }

System.Console.WriteLine("english IS-A {0}",
english.GetType()) // SpokenLanguage

let fsharp = { Name = "F#"; YearsInUse = 5 }

System.Console.WriteLine ("fsharp IS-A {0}",
fsharp.GetType()) // SpokenLanguage

In this case, the programmer must explicitly disambiguate by putting the type name in the fields
when used:

let english = {
SpokenLanguage.Name = "English"
SpokenLanguage.YearsInUse = 1000 }
System.Console.WriteLine("english IS-A {0}",

english.GetType()) // SpokenLanguage
let fsharp = {
ProgrammingLanguage.Name = "F#"

ProgramminglLanguage.YearsInUse = 5 }
System.Console.WriteLine ("fsharp IS-A {0}",
fsharp.GetType()) // ProgrammingLanguage

Record types also have an advantage when creating instances, in that the language permits “clon-
ing” of records: A record type instance can be created using the values of another record type
instance (of the same type, of course) as the default values:

type Person = {
FirstName : string
LastName : string
FavoriteColor : string

}

let ted = {

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

122 [XCHAPTER7 COMPLEX COMPOSITE TYPES

FirstName = "Ted";

LastName = "Neward";

FavoriteColor = "Black"
}
let michael = { ted with FirstName = "Michael" }
let matthew = { ted with FirstName = "Matthew" }

This produces three Person instances, each with LastName set to "Neward" and FavoriteColor set
to "Black". Naturally, if later code comes along and sets one of these instance’s FavoriteColor to
"Red", the other two are unaffected.

As with other F# types, the record type can also have members defined on it, such as:

type Person =
{ FirstName : string
LastName : string
FavoriteColor : string }
member p.FullName =
System.String.Format ("{0} {1}",
p.FirstName, p.LastName)

And the record type can be used as part of pattern-matching, such as:

let people = [

ted; michael; matthew;

{ FirstName="Aaron"; LastName="Erickson";
FavoriteColor="White" }

{ FirstName="Rick"; LastName="Minerich";
FavoriteColor="Blue" }

{ FirstName="Talbott"; LastName="Crowell";
FavoriteColor="Red" }

for n in people do
match n with
| { Person.LastName = "Neward" } ->
System.Console.WriteLine("Hi, {0}!", n.FirstName)
| _ —>
System.Console.WriteLine ("Who are you, {0}2",
n.FullName)

This is an advantage over the traditional class, which would have to be either deconstructed into a
primitive type or built up using an active pattern rule.

By default, the member fields of the record type are immutable; if a record type instance with muta-
ble fields is wanted instead, again the mutable keyword must be applied:

type MutPerson =
{ mutable FirstName : string
mutable LastName : string
mutable Age : int }

Not all members of the record type need be mutable; pick and choose those members that need to be
mutable, and leave the rest as immutable:

type MutPerson =
{ FirstName : string

Summary [X123

LastName : string
mutable Age : int
mutable Spouse : MutPerson }

But, as with other discussions around (im)mutability, the general preference is to prefer the immu-
table until the need for mutability has been proven.

Record Type Implicit Members

Like the value type, F# provides some implementation of common members “for free.” Specifically,
like the value type, the F# compiler infers an implementation of Equals () and GetHashCode ()
based on structural equality — that is, if two record type instances are of the same record type and
contain the same contents on a field-for-field basis, then they are considered equal and have the same
hash code. In addition, as with the value type, a certain amount of relational comparison code can
be inferred, making it possible for simple record types to be compared against one another:

let a = { FirstName="Ted"; LastName="Neward"; Age=38 }
let b = { FirstName="Ted"; LastName="Neward"; Age=38 }
System.Console.WriteLine("a = b? {0}",

if a = b then "yes" else "no")
System.Console.WriteLine("a.Equals(b)? {0}",

if a.Equals(b) then "yes" else "no")
System.Console.WriteLine("a <> b? {0}",

if a <> b then "yes" else "no")

As with the value type, the comparisons are done on a field-by-field basis; if more control over the
various operations are needed, declare and implement those members on the record type directly.

SUMMARY

F# defines a number of useful constructs that act as a kind of “run-up” to full-fledged class

types, and these types are often very useful as supplements or replacements to a class hierarchy.
Enumerated types are generally useful only in interop scenarios against other .NET languages, with
the exception of those cases where flags and multiple-case values are needed. Discriminated unions
are an exceptionally powerful way to represent a bound set of types and data values that define
each of those bound set cases. Value types are useful to define new “primitive types” in the NET
environment. Record types provide a “classes light” ability that can be powerful as a “named tuple”
type that also have some built-in behavior.

But when the .NET developer needs nothing less than a full-fledged class type, F# supports such
definitions, as described in the next chapter.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Classes

WHAT'’S IN THIS CHAPTER?

Defining classes

Creating fields and constructors

o

o

® Declaring members

® Using access modifiers
o

Using type extensions

For the experienced C# or Visual Basic developer, this chapter will likely be the least concep-
tually new material found thus far in the book — as the F# reference states clearly, object-
oriented programming is the dominant paradigm of the .NET ecosystem, and classes form the
core means by which .NET developers organize their code. As a result, classes and objects are
(or at least, should be) familiar ground, and F# supports the full range of object-oriented facili-
ties offered by other languages. Although the F# syntax frequently expresses the same concept
in a more terse fashion, overall the developer experienced with objects in C# or Visual Basic
will find classes in F# to be a comfortable transition.

A larger danger lurks — as a fusion of both objects and functions, F# offers more than “just”
another syntax for building object-oriented applications. As the danger of C++ was in using it
as “a better C” and not seeing its deeper capabilities, the danger to the budding F# developer
is in using it as “a better C#” and not seeing beyond the object facilities, thus ignoring the
potential power of the synthesis of object and function.

BASICS

To create a new, empty, class, F# uses (again) the type keyword, and class/end markers to
indicate the beginning and end of the class declaration:

type Example =
class
end
Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

126 [XCHAPTERS8 CLASSES

This introduces a new class into the assembly, although it doesn’t do much. Because classes are
generally of no use without either state or behavior (and, most often, both), it behooves us to first
introduce some kind of state to be held inside of the class.

Fields

The easiest way to introduce a field into a F# class is via the val keyword, which requires a type
annotation to indicate the type the field should hold:

‘) type Person =
class

Available for val firstName : string

download on . ;

Wrox.com B val lastName : string
en

Code snippet Class.fs

Contrary to what might seem obvious to the C# and Visual Basic developer, however, the val con-
struct introduces more than just a field into the defined class. It will also introduce a read-only prop-
erty of the same name, implicitly returning the value held in the field by that name.

It should be pointed out that the class and end markers, previously shown, are only necessary
when the class has no members inside of it, which is an admittedly rare condition. When members
are present, the markers can be left off completely:

type Person =
val firstName : string
val lastName : string

And the F# compiler is left to infer the actual type to compile (class, interface, or struct).
Because inference can sometimes be wrong, however, F# provides a set of custom attributes to make
explicit what the compiled form of this type should be, and so the most common declaration form of
the preceding code will appear as:

[<Class>]

type Person =
val firstName : string
val lastName : string

By default, in keeping with the general style of the F# language, the fields described in this type are
immutable and cannot change when initialized. To make them into mutable fields, F# requires the
field declaration be decorated with the mutable keyword, and any modification to the field needs to
be done with the “destructive update” operator (the left-arrow operator, written as <-):

[<Class>]
type Person =
val firstName : string
val mutable lastName : string

At this point, although the type has been defined, no method exists to allow for its creation. Unlike
the C# or Visual Basic language, the F# compiler does not automatically create a constructor
method. Thus, that exercise is left to us.

Basics [x127

Constructors

Recall from the object-oriented world that a constructor is a method invoked at the time that the object
instance is being created, with the intent of initializing the object instance with the necessary data it
requires to function properly. Being a good object-oriented citizen, F# naturally provides for the defini-
tion of constructors, using the new keyword and a parameter list of type-inferenced parameters:

‘) [<Class>]
type Person =

Available for val firstName : string
dalwrgl("ggrg" val mutable lastName : string
’ new (fn, 1ln) = { firstName = fn; lastName = 1ln }

Code snippet Class.fs

Frequently, a class wants more than one constructor, and so long as the constructor method signa-

tures are differentiated from one another either in number or type from one another, the class can
have as many constructors as it wants:

‘) [<Class>]
type Person =

Available for val firstName : string
download on ; .
Wrox.com val mutable lastName : string
new () = { firstName = ""; lastName = "" }
new (fn, 1ln) = { firstName = fn; lastName = 1ln }

Code snippet Class.fs

As is often the case, one constructor will frequently want to “chain” into another one, reducing the
potential for duplicated logic within constructors. In F#, this is done like this:

‘) [<Class>]
type Person =

Available for val firstName : string
download on val mutable lastName : string
Wrox.com
new () = Person("", "")
new (fn, 1n) = { firstName = fn; lastName = 1n }

Code snippet Class.fs

If a chaining constructor (like the no-argument constructor previously defined) wants to do some
additional logic after the chained-constructor call, this is done by appending the keyword then and
defining a properly indented block of code:

\) [<Class>]
type Person =

Available for val firstName : string
download on . i
Wrox.com val mutable lastName : string
new () = Person("", "") then
System.Console.WriteLine ("In Example ctor")
new (fn, 1n) = { firstName = fn; lastName = 1n }

Code snippet Class.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

128 [XCHAPTERS8 CLASSES

Periodically, code written in a constructor wants to reference the object being instantiated. F# does
not define a pre-existing “special name” identifying the object upon which methods, properties, or
constructors are operating, like the this or Me references from C# or Visual Basic. Instead, F# uses a
self-identifier declaration made explicitly on the constructor or member. In the case of a constructor,
the self-identifier is done using an as clause after the constructor’s declaration but before its body:

\) [<Class>]
type Person =

Available for val firstName : string
download on . .
Wrox.com val mutable }astName : string
new () as this = Person("", "") then
System.Console.WriteLine (this)
new (fn, 1n) = { firstName = fn; lastName = 1ln }

Code snippet Class.fs

The compiler will emit a warning if the as clause is present and the introduced name is never used
(as is the case with the clause on the primary constructor in the preceding example). The names used
are scoped to the constructor or class body, as appropriate, and need not be the same:

[<Class>]
type Person =
val firstName : string
val mutable lastName : string
new () as this = Person("", "") then
System.Console.WriteLine (this)
new (fn) as p = Person(fn, "") then
System.Console.WriteLine (p)
new (fn, 1n) = { firstName = fn; lastName = 1ln }

In general, most classes will be defined in terms of one principal constructor to which all others
defer, such as the two-argument version in the preceding example. To reflect this, F# encourages the

definition of a primary constructor, whose signature appears on the type-definition line, above all
the other members in the class:

// NOTE: This will not compile as-is
[<Class>]
type Person(fn, 1ln) =

val firstName : string

val mutable lastName : string

new () as this = Example("", "") then
System.Console.WriteLine (this)
new (fn, 1n) = { firstName = fn; lastName = 1ln }

When we do this, however, a couple of things suddenly kick in.

First , the compiler complains about the definitions of two the val-declared fields — it will state that
they need to be both made mutable and marked with the pefaultvalue custom attribute, which we
can easily do:

[<Class>]
type Person(fn, 1ln) =

Basics [X129

[<DefaultValue>]

val mutable firstName : string
[<DefaultValue>]

val mutable lastName : string

new () as this = Person("", "") then

System.Console.WriteLine (this)

However, the F# compiler has also done something interesting with the primary constructor — several
“somethings.” First, any parameters defined on the primary constructor are also implicitly declared

as fields on the class. Thus, as previously written, the Person type now has four fields on it: £n, 1n,
firstName and lastName. Because the two val-declared fields were there essentially to hold two
strings, it becomes unnecessary to declare those fields anymore, and we can strip the example down to:

[<Class>]
type Person(fn : string, 1ln : string) =
new () as this = Person("", "") then

System.Console.WriteLine (this)

Next, the primary constructor takes the typical constructor step of copying the data passed in over
to the fields, saving the F# developer from having to make that explicit step. This is why the primary
constructor, as written here, has no real “body” to it.

Despite this automatic behavior, the primary constructor may want to perform some additional
logic, just as the other constructor does. This logic simply “appears” in the body of the class as do-
prefixed expressions:

[<Class>]
type Person(fn : string, 1ln : string) =
do System.Console.WriteLine("{0} {1}", fn, 1n)
new () as this = Person("", "") then
System.Console.WriteLine (this)

The do is necessary because the language insists that any expression results (such as the “unit” result
from calling the console.writeLine method) must be thrown away. Multiple statements can be
chained under a single do expression:

[<Class>]
type Person(fn : string, 1ln : string) =
do
System.Console.WriteLine("{0}", £fn)
System.Console.WriteLine("{0}", 1n)
new () as this = Person("", "") then
System.Console.WriteLine (this)

y The primary constructor now requires type annotations to its parameters
because the compiler needs to know what the types of the two parameters are
because WriteLine has so many possible overloads. This is a common situation
in F#: The compiler can type-infer most situations but periodically gets confused
and needs a bit of assistance in the nature of a type annotation or two.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

130 [XCHAPTERS8 CLASSES

The do expression or block of code has one particular restriction on it, mostly that it must appear
before any other member declarations or definitions (which we discuss later).

Frequently, however, the F# developer will want to define intermediate values that hold data calcu-
lated from the values passed in to the primary constructor; rather than having to define an explicit
val-declared field and connect with a do expression (and requiring a self-identifier so that we can
reference the field from inside the do expression):

[<Class>]
type Person(fn : string, 1ln : string) as this =
[<DefaultValue>]
val mutable fullName : string
do
this.fullName <- fn + " " + In
new () as this = Person("", "") then

System.Console.WriteLine (this)

there is actually a shorter, easier, more F#-idiomatically correct way, via a let expression:

[<Class>]

type Person(fn : string, 1ln : string) =
let fullName = fn + " " + 1n
new () as this = Person("", "") then

System.Console.WriteLine (this)

Any binding introduced as a 1et binding in a class like this is a (by default) read-only private field
within the class. They do not have to derive from constructor parameters, of course; any expression
is acceptable here:

\) [<Class>]
type Person(fn : string, 1ln : string) =
Available for let fullName = fn + " " + 1n
d&ﬂ:?g&g“ let constructionDate = System.DateTime.Now

let leapYearBaby =
if constructionDate.Month = 2 &&
constructionDate.Day = 29
then true
else false
new () as this = Person("", "") then
System.Console.WriteLine (this)

Code snippet Class.fs

As can be inferred from the preceding code, the compiler evaluates the body of the primary con-
structor in the order in which it appears in the declaration, making it perfectly legal to reference an
earlier binding name in a later binding expression.

By default, when the compiler builds code referencing these fields (whether introduced by a 1et
binding or in the primary constructor signature), the compiler assumes that these are immutable,
read-only fields and disallows any attempt to modify them when initialized. This is a recurring

Basics [xX131

theme throughout the F# language, and if the need for mutable elements is necessary, F# permits it
via the mutable keyword modifier on the 1et binding declaration:

‘) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ T
Wrox.com let fullName = fn + + 1n

let constructionDate = System.DateTime.Now
let leapYearBaby =
if constructionDate.Month = 2 &&
constructionDate.Day = 29
then true
else false
do
if constructionDate = System.DateTime.Now then age <- age+l
new () as this = Person("", "",0) then
System.Console.WriteLine (this)
new (fn, 1ln) as this = Person(fn, 1n,0) then
System.Console.WriteLine (this)

Code snippet Class.fs

While the declared element is still internal to the class, it can now be modified, usually through a
method call or property setter (described next).

Regarding the difference between using 1et versus val declarations, it is important to note that val
always introduces a field, whereas a 1et binding can introduce either a method or a field, with the
compiler determining which is more appropriate. For this reason, F# developers may find themselves
occasionally reaching for val in those situations when they need to ensure a field is introduced, as
opposed to a property or a method that returns a constant value.

Creating

After the type is defined, creating an instance of the type is strikingly similar to the process in C# or
Visual Basic: The new keyword, followed by the type name, followed by values intended for the con-
structor’s parameter set, cause the CLR to create an instance of that type and invoke its constructor:

let pl = new Person("Ted", "Neward", 38)

Any of the constructors defined on the type are available for use, and each returns a new object, as
expected:

let pl = new Person("Ted", "Neward", 38)
let p2 new Person("Aaron", "Erickson")
let p3 new Person()

In classic CLR tradition, each of these is a garbage-collected, reference-tracked object and will only
be destroyed when the last reference to the object goes out of scope, which in this case will be when
the method exits.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

132 [XCHAPTERS8 CLASSES

MEMBERS

Much of the time, simply providing constructors to a type is not sufficient to make it useful — classes

also generally want to have means by which to access the data passed in during construction (or

derived from that data), and/or provide behavior that users of the class may want to use. For these situ-

ations, F# allows the provision of members to the class, typically using the member keyword, followed

by a self-identifier prefix and then the name by which a member wants to be known; an example of
such a member has already been demonstrated so far:

J

Available for
download on
Wrox.com

[<Class>]
type Person(fn : string, 1ln : string, a : int) =

let
let
let

new

new

fullName = fn + " " + 1n
constructionDate = System.DateTime.Now
leapYearBaby =

if constructionDate.Month = 2 &&
constructionDate.Day = 29

then true

else false

() as p = Person("", "", 0) then

System.Console.WriteLine (p)

(fn, 1n) as this = Person(fn, 1n, 0) then

System.Console.WriteLine (this)

member p.IsPerson = true

Code snippet Class.fs

In general, the F# compiler infers the type of the member — a method or property — based on
the definition after the member name. In the preceding case, because the TsPerson member
simply returns a constant value, F# infers the TsPerson member to be a read-only Boolean

property.

Properties

Defining additional properties on the type can often take the same form as the one previously dem-

onstrated, often providing access to the data passed in during construction:

J

Available for
download on
Wrox.com

[<Class>]
type Person(fn : string, 1ln : string, a : int) =

let
let
let

new

new

fullName = fn + " " + 1n
constructionDate = System.DateTime.Now
leapYearBaby =

if constructionDate.Month = 2 &&
constructionDate.Day = 29

then true

else false

() as p = Person("", "", 0) then

System.Console.WriteLine (p)

(fn, 1n) as this = Person(fn, 1n, 0) then

System.Console.WriteLine (this)

member p.IsPerson = true
member p.FirstName = fn

Members [X133

member p.LastName = 1n
member p.Age = a

Code snippet Class.fs

In the continuing spirit of the type-inferencing nature of the F# language, the compiler infers that
these three new properties are of type string, string and int, respectively. And, in the continuing
spirit of the immutable-preference nature of the F# language, all three properties are assumed to be
read-only.

Inference, however, can sometimes be wrong, and the F# language provides a syntax to make the
member explicitly recognized as a property. Or in some scenarios, the property will require more
code than simply returning a copy of a field value. In either case, the property need only specify a
with get () clause, properly indented, and this will be the body of the getter method associated
with the property name:

‘) [<Class>]

type Person(fn : string, 1ln : string, a : int) =
Available for let fullName = fn + " " + 1n
dwmrggg" let constructionDate = System.DateTime.Now

let leapYearBaby =

if constructionDate.Month = 2 &&
constructionDate.Day = 29

then true
else false

new () as p = Person("", "", 0) then
System.Console.WriteLine (p)

new (fn, 1ln) as this = Person(fn, 1n, 0) then
System.Console.WriteLine (this)

member p.IsPerson = true

member p.FirstName = fn
member p.LastName = 1n
member p.Age = a
member p.FullName with get() = fullName
member p.NameAndAge
with get() =

System.String.Format ("{0} ({1} years old)",
p.FullName, p.Age)

Code snippet Class.fs

Note that in the preceding example, the Ful1Name property uses the let-introduced fullName field,
which is subtly different than if the Ful1lName property did the concatenation; the fullName let-
binding is evaluated once, during the object’s construction, whereas if the property does the con-
catenation, it will be done on each and every property get reference. Given that these fields are all
read-only (so far), such repeated concatenation would be a waste of CPU cycles.

In those situations where a read/write property is instead preferred, the member definition need
only have a with set clause, specifying a single parameter to act as the implicitly passed-in value
to the setter. As with most other cases in the F# language, this parameter type need not be specified

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

134 [XCHAPTERS CLASSES

explicitly if it can be inferred. Because most read/write properties want to act upon a backing field,
the F# developer must explicitly define a mutable field that will be modified by the property, again
typically with a 1et binding. And because most writable properties will also want to be readable,
providing both a get and a set clause will require the first to be set off with the keyword with and
the second with and; the common idiom looks like this:

\) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ W
Wrox.com let fullName = fn + + 1n

let constructionDate = System.DateTime.Now
let leapYearBaby =
if constructionDate.Month = 2 &&
constructionDate.Day = 29
then true
else false
new () as p = Person("", "", 0) then
System.Console.WriteLine (p)
new (fn, 1ln) as this = Person(fn, 1ln, 0) then
System.Console.WriteLine (this)
member p.IsPerson = true
member p.FirstName = fn
member p.LastName = 1n
member p.Age
with get() = age

and set (newAge) = age <- newAge
member p.FullName with get() = fullName
member p.NameAndAge

with get() =

System.String.Format ("{0} ({1} years old)",
p.FullName, p.Age)

Code snippet Class.fs

Notice that the set clause again uses the destructive update operator (the left arrow operator, <-) to
replace the value stored in the mutable field with whatever value is passed in.

Of course, normally some amount of validation will want to be done before blindly copying the new
value over into the field, and as with almost all other .NET languages, F# allows for full method
bodies in either the get or set clauses of the property member:

\) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ W
Wrox.com let fullName = fn + + 1n
new () as p = Person("", "", 0) then

System.Console.WriteLine (p)

new (fn, 1ln) as this = Person(fn, 1ln, 0) then
System.Console.WriteLine (this)

member p.IsPerson = true

member p.FirstName = fn

member p.LastName = 1n

member p.Age

Members [X135

with get() = age
and set (newAge) =

match newAge with

| newAge when newAge > 0 ->
age <- newAge
->
failwith "Age cannot be 0 or less"
member p.FullName with get () = fullName
member p.NameAndAge

with get() =

System.String.Format ("{0} ({1} years old)",
p.FullName, p.Age)

Code snippet Class.fs

Accessing properties is almost exactly identical to the form used in other .NET languages, through a
dot-qualified use of the property name on an object reference:

let pl = new Person("Ted", "Neward", 38)
let p2 = new Person("Aaron", "Erickson")
let p3 = new Person()
for p in [pl; p2; p3] do
System.Console.WriteLine("{0} is {1} years old",
p.FullName, p.Age)

If the property is writable, it is updated through (again) the use of the destructive update (left arrow)
operator, like so:

pl.Age <- pl.Age+l

Named Property Initialization
When constructing a new instance of an object, if the class has one or more properties defined on it,

F# permits initialization of those properties in the constructor syntax:

let ted = new Person("Ted", "Neward", Age=38)

This permits a more expressive style of programming and cuts down on the number of assignment
statements, effectively making the written code more functional in style, even if the class being
instantiated is more of a traditional imperative type.

Using this style, a developer could allow for a highly flexible style of construction by providing a
zero-argument constructor and a set of read/write properties:

\) [<Class>]
type FlexiPerson(fn, 1ln, a) =
Available for let mutable firstName = fn
dmgtgg{:" let mutable lastName = 1n
let mutable age = a
new() = FlexiPerson("", "", 0)

member fp.FirstName

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

136 [XCHAPTER8 CLASSES

with get() = firstName and set(n) = firstName <- n
member fp.LastName

with get() = lastName and set(n) = lastName <- n
member fp.Age

with get() = age and set(n) = age <- n

Code snippet Class.fs

This then allows the developer to select precisely which properties should be initialized during
construction:

let p5 = new FlexiPerson()
let p6 = new FlexiPerson(FirstName="Ted")
let p7 = new FlexiPerson (LastName="Neward", Age=38)

However, doing this carries a few drawbacks, the first of which is that every property must be mutable
and thus create potential thread-synchronization points, which can require additional coding and test-
ing. The second drawback stems from the fact that the developer must make sure the object is viable for
use regardless of which properties were or weren’t set, which means considering the full permutation of
all possible properties set during construction and testing each of those permutations.

Similar flexibility can be achieved using optional parameters, described later in this chapter (in the
“Methods” section), in the constructor:

[<Class>]
type OptiPerson(?firstName, ?lastName, ?age) =
member fp.FirstName

with get() = firstName
member fp.LastName

with get() = lastName
member fp.Age

with get() = age

This permits similar flexibility in construction:

let op5 = new OptiPerson()
let op6 = new OptiPerson(firstName="Ted")
let op7 = new OptiPerson (firstName="Neward", age=38)

But the second drawback, that of making sure the class is still usable safely for all possible construc-
tor permutations, remains.

In general, this property-based initialization syntax is used when constructing traditional imperative
object-oriented types with large numbers of properties, such as the WinForms library.

Indexer Properties

Within the CLR, it is common for a class to provide a kind of collection interface through a spe-
cial kind of property called an indexer; in the C# language, this appears in the language using the
square-bracket operators, whereas Visual Basic uses the round-bracket operators, both of which

Members [x137

deliberately remind the programmer of accessing elements in an array in their respective syntaxes.
(The pDictionary<K, V> type in the System.Collections.Generic namespace is one such class.)

In F#, creating an indexer can take one of several forms.

To duplicate the classic C# form in which the property can be accessed via the square-bracket syn-
tax, define a property named Ttem, which is the conventional name for the indexer property across
the CLR, and use this slightly altered form of the property syntax:

‘) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ T
Wrox.com let fullName.— fn + + 1n
new () as this = Person("", "",0) then

System.Console.WriteLine (this)
new (fn,ln) as this = Person(fn, 1n, 0) then
System.Console.WriteLine (this)
member p.IsPerson = true
member p.FirstName = fn
member p.LastName = 1n
member p.Age
with get() = age
and set (newAge) =
match newAge with
| newAge when newAge > 0 ->
age <- newAge
->
failwith "Age cannot be 0 or less"
member p.FullName with get() = fullName
member p.NameAndAge
with get () =
System.String.Format ("{0} ({1} years old)"
p.FullName, p.Age)
member p.AgeGracefully() =
System.Console.WriteLine ("I feel wiser!")
p.Age <- p.Age + 1
member p.Item
with get(organ) =
match organ with
| "Heart" -> "Ba-dump"
| "Stomach" -> "Growl"
| "Mouth" -> "Chomp chomp swallow"
| "Brain" -> "Crackle crackle"
| —

Code snippet Class.fs

When accessing the indexer, the F# form looks just slightly different than that of C#, in that the
square-bracket form is still considered a member of the class, and so must be dot-prefixed, as any
other member access must be:

System.Console.WriteLine("{0}'s heart says {1}",

pl.FullName, pl.["Heart"])

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

138 [XCHAPTERS8 CLASSES

Just as properties can be defined either as read-only or read-write, indexer properties can also be
defined either as read-only (such as the preceding code), read-write, or, rarely, write-only. In the
event that a writable indexer property is defined, its set clause must be defined as returning unit.

Multiple indexer properties may be defined, so long as the parameters to the get (and/or set) of the
indexer are different in either type or number.

Alternatively, if the indexer needs only be accessible from F# (or from another language that allows
access to indexed properties, such as Visual Basic), then any name can be used for the property

name
\) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ W
Wrox.com let fullName = fn + + 1n

new () as this = Person("", "",0) then
System.Console.WriteLine (this)
new (fn,1ln) as this = Person(fn, 1ln, 0) then
System.Console.WriteLine (this)
member p.IsPerson = true
member p.FirstName = fn
member p.LastName = 1n
member p.Age
with get() = age
and set (newAge) =
match newAge with
| newAge when newaAge > 0 ->
age <- newAge
| _ —>
failwith "Age cannot be 0 or less"
member p.FullName with get() = fullName
member p.NameAndAge
with get() =
System.String.Format ("{0} ({1} years old)"
p.FullName, p.Age)
member p.AgeGracefully() =
System.Console.WriteLine ("I feel wiser!")
p.Age <- p.Age + 1
member p.Item
with get (organ) =
match organ with
| "Heart" -> "Ba-dump"
| "Stomach" -> "Growl"
| "Mouth" -> "Chomp chomp swallow"
| "Brain" -> "Crackle crackle"
| _ -
member p.Organ
with get (name) =
match name with
| "Heart" -> "Ba-dump"
| "Stomach" -> "Growl"
| "Mouth" -> "Chomp chomp swallow"
| "Brain" -> "Crackle crackle"
|

Code snippet Class.fs

Members [X139

Using this named indexer property looks a bit awkward for those used to the square-bracket style
of indexer, because now the property name must take a parameter, which makes it look more like a
method call:

let pl = new Person("Jason", "Mauer")
System.Console.WriteLine("{0}'s heart says {1}"
pl.FullName, pl.Organ("Heart"))

As with any indexed property, named indexer properties can also be defined either as read-only
(such as the preceding code), read-write, or, rarely, write-only. Named indexer properties can also be
overloaded, so long as the parameters to the indexer property differ in either number and/or in type:

\) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ W
Wrox.com let fullName'— fn + + 1n
new () as this = Person("", "",0) then

System.Console.WriteLine (this)
new (fn,Iln) as this = Person(fn, 1n, 0) then
System.Console.WriteLine (this)
member p.IsPerson = true
member p.FirstName = fn
member p.LastName = 1n
member p.Age
with get() = age
and set (newAge) =
match newAge with
| newAge when newhAge > 0 ->
age <- newAge
->
failwith "Age cannot be 0 or less"
member p.FullName with get() = fullName
member p.NameAndAge
with get() =
System.String.Format ("{0} ({1} years old)"
p.FullName, p.Age)
member p.AgeGracefully() =
System.Console.WriteLine ("I feel wiser!")
p.Age <- p.Age + 1
member p.Item
with get(organ) =
match organ with
| "Heart" -> "Ba-dump"
| "Stomach" -> "Growl"
| "Mouth" -> "Chomp chomp swallow"
\
| —

"Brain" -> "Crackle crackle"
member p.Organ
with get (name) =
match name with
| "Heart" -> "Ba-dump"
| "Stomach" -> "Growl"
| "Mouth" -> "Chomp chomp swallow"
| "Brain" -> "Crackle crackle"
| —

member p.Organ
Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

140 [XCHAPTERS CLASSES

with get(id) =
match id with

| 1 -> "Ba-dump"

| 2 -> "Growl"

| 3 -> "Chomp chomp swallow"

| 4 -> "Crackle crackle"

|

Code snippet Class.fs

Note that for any given indexer property, named or otherwise, the get/set clauses must specify
matching parameter lists for any given definition; in other words, the get clause parameter list must
match that of the set clause.

Methods

Conceptually, a method is not all that different from a function (see Chapter 13), in that both model
some kind of behavior, and frequently the two are interchangeable. As working definitions, we define
“behavior defined as part of a class” as a method, and “behavior defined outside of a class” as a
function, though these definitions aren’t ironclad. In the interests of full disclosure, though, be aware
that despite the conceptual similarities to a function and a method — both model behavior, both
accept some number of parameters and yield a value, and so on — the F# language does treat the two
as quite different creatures at times, so although both are frequently interchangeable, this isn’t always
the case, and there are number of things a function can do that a method can’t, and vice versa.

The definition of a method on a class can take two forms: If the method is intended as an internal-
only definition, it can be introduced via a 1et binding, whereas if it is intended as a public-facing
definition, it is typically done via a member definition.

Defining a member method is not significantly different from defining a property, save that the
parameters to the method are captured in an argument list in parentheses immediately after the
method name, similar to the style seen in C#:

‘) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ W
Wrox.com let fullName = fn +. + 1n
member p.FullName with get() = fullName

member p.Greet (otherPerson : Person, message) =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)

Code snippet Class.fs

Calling a method looks much like it does in any other .NET language, using the object reference, the
dot-qualified name of the method, and the list of values to pass as arguments to the method:

pl.Greet (p2, "Howdy!")

Members [x141

The parameters in the method’s parameter list can either be inferred or specified explicitly
with type annotations, or a mix of both, as shown. The return type of the method is inferred
from the last expression defined in the body of the method, without any explicit return type

declared:
‘) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ W
Wrox.com let fullName = fn +. + 1n
member p.FullName with get () = fullName

member p.Greet (otherPerson : Person, message) =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.CreateGreeting(otherPerson : Person, message) =
System.String.Format ("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)

Code snippet Class.fs

So far, methods aren’t all that different from their C# cousins.

However, methods may also be written in what F# refers to as “curried” form (because the
format looks like what curried functions will look like when we discuss them in Chapter 13),
where the arguments after the method may be listed after the method name without

parentheses:
‘) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
dow"m;“ggl:" let fullName = fn + " " + 1n
member p.FullName with get () = fullName

member p.Greet (otherPerson : Person, message) =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.CreateGreeting(otherPerson : Person, message) =
System.String.Format ("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.CurriedGreet target message =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, target)

Code snippet Class.fs

This is only accepted when the parameters are inferred; type descriptors cannot be present
when working with this style. Stylistically, lots of F# methods are written this way, particularly
because when done this way, methods can be curried just as functions can, whereas using the
parenthesized style requires the complete set of parameters (excepting those marked

as optional).

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

142 [XCHAPTERS CLASSES

Because of the similarity of syntax between F# tuples and C# methods, it’s important to point out
that these two methods are legal overloads because they represent two entirely different method

signatures:
\) member p.Greet (target : Person, message) =
System.Console.WriteLine("{0} says {1} to {2}",
Available for p.FullName, message, target.FullName)
download on //
Wrox.com

member p.Greet (target : Person) (message : string) =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, target.FullName)

Code snippet Class.fs

The first is a method taking a single argument, a two-argument tuple (of Person * string). The
second is a method taking two arguments, one of Person and the other of string. In most direct
invocation cases, F# can silently “convert” or accept either syntax, but it’s important to realize that
the two are different: only the first form will be curryable, whereas the second form will support
method overloading (because the types of the tuple argument will be different). As a result, mixing
the two styles inside of a single class is highly discouraged.

@ The above paragraph is slightly deceptive. While the F# language allows the devel-
oper to define overloaded methods that use both curried and tupled arguments,
calling them is another matter. Attempts to write pl.Greet (p2), assuming pl and
p2 are Person objects, will result in the compiler disallowing the call, citing “One
or more of the overloads of this method has curried arguments. Consider rede-
signing these members to take arguments in tupled form.” So, again, while it is
theoretically possible to overload based on curried-vs-tupled style arguments, it’s
really, really strongly discouraged.

Overloaded Methods
Just as with other .NET languages, the F# environment supports overloaded methods: methods with
the same name, whose signature differs either in the number of arguments (the arity of the method),
the parameter types of the arguments, or both:

‘) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on _ W
Wrox.com let fullName = fn +. + 1n
member p.FullName with get() = fullName

member p.Greet (otherPerson : Person, message) =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.Greet (otherPerson : Person) =
System.Console.WriteLine("{0} says 'Howdy!' to {1}",

Members [X143

p.FullName, otherPerson.FullName)
member p.CreateGreeting(otherPerson : Person, message) =
System.String.Format ("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)

Code snippet Class.fs

Just as with C# or Visual Basic, F# does not permit overloading based on return type — the
argument list to the overloaded method must somehow be different so that the right one can

be selected based on what arguments are passed in the method invocation. In addition, F# has
an extremely difficult time with overloaded methods and curried-style methods; so as a general
rule, choose either the curried style for a given method name, or an overload style, but

not both.

Because F# doesn’t do as many implicit conversions (such as automatically widening an int
to a float or double) as C# or Visual Basic does, F# developers looking to avoid having to
do explicit widening casts will find overloading methods to be useful. However, in general,
community F# code to date doesn’t create quite as many overloaded methods as seen in C# or
Visual Basic code, so new F# developers should exercise caution when creating lots of over-
loaded methods.

Named Parameters

At the point of invocation, F# permits method parameters to be specified in an out-of-order style
using named parameters, much as Visual Basic supports, for those methods where the order of the
parameter invocation can be hard to remember:

\) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on let fullName = fn + " " + 1n
Wrox.com ,
member p.FullName with get() = fullName

member p.Greet (otherPerson : Person, message) =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.Greet (otherPerson : Person) =
System.Console.WriteLine("{0} says 'Howdy!' to {1}",
p.FullName, otherPerson.FullName)
member p.CreateGreeting(otherPerson : Person, message) =
System.String.Format ("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.WhoWhatWhereWhenWhy (what,
where,
whenn : System.DateTime,
why) =
System.String.Format ("{0} is doing {1} at {2} on {3} " +
"because {4} ",
p.FullName, what, where, whenn, why)

Code snippet Class.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

144

[XCHAPTER 8 CLASSES

Notice that the declaration of the method is no different than any other method on the class; the F#
compiler will effectively “reorder” the order of parameter invocation to line up correctly with the
method being invoked:

let pl = new Person("Meredith", "Solomon", 28)
let wwwww =
pl.WhoWhatWhereWhenWhy (
whenn=System.DateTime.Now,
where="in the sitting room",
what="relaxing",
why="because I'm tired")
System.Console.WriteLine (wwwww)

The method being invoked need not be written in F#; any method written in any .NET language can
be invoked using named parameters:

System.Console.WriteLine(arg=[||], format="This is a message")

This facility is available to any .NET assembly called by F# because the CLR requires languages to
capture the parameter names as part of the compilation information and store them in the assembly
for later use. This is particularly useful when invoking methods on assemblies written to assume a
named-argument language facility, such as that provided in Visual Basic. (By far, the most common
scenario for this is when invoking Microsoft Office assemblies, which were written to assume a
Visual Basic client.)

Optional Parameters

Some methods may have a varying “set” of parameters that can be passed individually, in groups, or
as a complete set; in other words, a given method may have up to four potential parameters, and if
F# supported only method overloading, 24 different method overloads would need to be written to
support all of the possible permutations.

Because F# recognizes that sometimes a method simply doesn’t need some or all the parameters to a
method, F# allows method arguments to be marked in their definitions as optional, using the »:

‘) [<Class>]
type Person(fn : string, 1ln : string, a : int) =
Available for let mutable age = a
download on let fullName = fn + " " + 1n
Wrox.com)
member p.FullName with get() = fullName

member p.Greet (otherPerson : Person, message) =
System.Console.WriteLine("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.Greet (otherPerson : Person) =
System.Console.WriteLine("{0} says 'Howdy!' to {1}",
p.FullName, otherPerson.FullName)
member p.CreateGreeting(otherPerson : Person, message) =
System.String.Format ("{0} says {1} to {2}",
p.FullName, message, otherPerson.FullName)
member p.WhoWhatWhereWhenWhy (what,
where,

Members [X145

whenn : System.DateTime,
why) =
System.String.Format ("{0} is doing {1} at {2} on {3} " +
"because {4} ",
p.FullName, what, where, whenn, why)
member p.Alibi (?what : string,
?where : string,
?whenn : System.DateTime,
?why : string) =

Code snippet Class.fs

When a parameter is marked this way, it changes its type declaration slightly, to an option
instance of the declared or inferred type. Thus, in the preceding example, each of the string
parameters is now implicitly declared as a string option, and the same is true of the DateTime
instance.

Calling the method can be done using either traditional placement syntax, or named-argument syn-
tax, or even a combination of the two:

let alibil = pl.Alibi("relaxing", "in the sitting room",
System.DateTime.Now, "because I'm tired")
let alibi2 = pl.Alibi("relaxing", "in the sitting room",

why="because I'm tired",
whenn=System.DateTime.Now)

Because of all the option instances, implementing the body of this method can be tricky using tra-
ditional if/else constructs; by the way, this is another place where pattern-matching can be incred-
ibly useful:

member p.Alibi (?what : string,
?where : string,
?whenn : System.DateTime,
?why : string) =
match (what, where, whenn, why) with
| (Some(wht), Some(whr), Some(whn), Some(why)) ->
System.String.Format ("{0} did {1} {2} on {3} because {4}",
p.FullName, wht, whr, whn, why)
| (None, None, None, None) ->
System.String.Format ("{0} has no alibi at all",
p.FullName)
| (0 0 0) >
System.String.Format ("{0} has no alibi at all",
p.FullName)

See Chapter 6 for more details on pattern-matching.

Optional arguments must come after any nonoptional arguments in the parameter list. Optional
arguments are also only available to members, not functions declared via 1et bindings inside
the class.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

146 [XCHAPTERS CLASSES

F# does not provide for any sort of default parameter value, such as we find in languages such as
C++, but much the same effect can be had via the use of a defaultarg function defined somewhere
where the member method can find it:

\) member p.AnotherAlibi (?what : string, ?where : string,
?whenn : System.DateTime,
Available for ?why : string) =
d&ﬂ:?g&g“ let defaultArg x y = match x with None -> y | Some(v) -> v

let wht = defaultArg what "nothing"

let whr defaultArg where "noplace"

let whn defaultArg whenn System.DateTime.Now

let why = defaultArg why "of no reason"

System.String.Format ("{0} did '{1}' '{2}' because '{3}'",
p.FullName, wht, whr, why)

Code snippet Class.fs

When invoking optional arguments by name, the option value (Some (x) or None) can be explicitly
passed by prefixing the named optional argument with a 2, just as it is declared:

let alibi3 = pl.Alibi("relaxing", "in the sitting room",
?why=Some ("because I'm tired"),
whenn=System.DateTime.Now)

Note that, of course, method parameters can also be explicitly declared as option types, without
resorting to the preceding syntax. In general, F# developers will again want to choose one of the
two syntaxes and be consistent, at least within a single class, module, or assembly.

STATIC MEMBERS

Declaring a member to be static (that is, a member that is not associated with any particular instance of
that type) is strikingly similar to how it is done in other languages: a modifier, static, appears before
the member definition. No self-identifier prefix is placed on the member definition, because the member
is not associated with an instance of the type and therefore needs no identification.

Properties can be declared as static, as can methods:

[<Class>]
type Skynet() =
static member CreateTerminator() =

new Person("T", "800", 0)
static member AfterJudgmentDay
with get() =

let jd = new System.DateTime (1997, 8, 29)
System.DateTime.Now.ToBinary () > jd.ToBinary()

Accessing a static property is just as it is for most other .NET languages, prefixing the method or
property with the type name:

let T800 =
if Skynet.AfterJudgmentDay then
Skynet.CreateTerminator ()

Static Members [x147

else
new Person("Arnold", "Schwarzenegger", 50)

Fields can also be declared as static, using val-based syntax similar to that seen for instance fields,
with all the usual dire warnings about shared state and recommendations to avoid it:

[<Class>]
type Skynet () =
[<DefaultValue>]
static val mutable private terminatorsBuilt : inté64
static member CreateTerminator() =
Skynet.terminatorsBuilt <- Skynet.terminatorsBuilt+1L

new Person("T", "800", 0)
static member AfterJudgmentDay
with get() =

let jd = new System.DateTime (1997, 8, 29)
System.DateTime.Now.ToBinary () > jd.ToBinary ()

Static fields can also be introduced via 1et declarations:

\) [<Class>]
type Skynet () =
Available for [<DefaultValue>]
download on static val mutable private terminatorsBuilt : inté64

Wrox.com . .
static member CreateTerminator() =
Skynet.terminatorsBuilt <- Skynet.terminatorsBuilt+1L

new Person("T", "800", 0)
static member AfterJudgmentDay
with get() =

let jd = new System.DateTime (1997, 8, 29)
System.DateTime.Now.ToBinary () > jd.ToBinary ()
static let humanskKilled = 3000000000L

Code snippet Class.fs

The static 1et creates an immutable, private field, unless prefixed with the mutable keyword, as
described in the discussion about 1et-declared fields earlier in this chapter. Note that just as with
the val-declared static field, 1et-declared fields also need to be prefixed with the type name when
referenced, even within the type itself.

Operator Overloading

F# permits the definition of methods whose name is actually a set of non-alphanumeric symbols,
frequently known as operator overloading in other languages. Technically, that term is inappropriate
here, because F# not only allows the definition of methods whose name matches that of traditional
operators (+, —, and so on) but also to define new operators that have never been defined before.

Defining an operator is similar to defining a static method, except that the operator symbol is used
instead of an alphanumeric name and wrapped in parentheses:

\) [<Class>]
type Munchkin() =

Available for let mutable 1v =1
dﬂ‘,”""’ad on let mutable armor : Ttem =
fox.com Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

148 [XCHAPTERS CLASSES

new Item("Clothes of Ineptitude", "Armor", 0)
member m.Level

with get() = 1lv
member m.Armor

with get() = armor

and set (i) = armor <- i

member m.GoUpALevel () =
v <- 1v + 1

member m.TotalBonus =
1v + armor.Bonus

static member (<<==) (m : Munchkin, mi: MunchkinItem) =
m.Armor <- mi
m

Code snippet Class.fs

This then implicitly allows for using the method in an infix style notation, rather than the explicit
dot-name style normally used for method invocation:
let ted = new Munchkin/()

let coolArmor = new Item("Functional Plate", "Armor",5)
ted <<== coolArmor

When compiled, the operator method will either be compiled using a normal .NET operator method
name (such as op_Greater for the F# method (>)), or mangled into a method name prefixed with
op_ in the standard .NET convention, as described in the F# specification. The preceding method,
for example, will be converted into a static method named op_LessLessEqualsEquals.

Normally, operators shouldn’t change the value of the objects they operate on, but instead return
new objects with the changed value, such as the following:

‘) [<Class>]

type Complex(r : int32, i : int32) =
Available for member c.R = r
dm:;‘?ggﬂ?" member c¢.I = i

static member (+) (cl : Complex, c2 : Complex)
new Complex(cl.R + c2.R, cl.I + c2.I)

static member (-) (cl : Complex, c2 : Complex) =
new Complex(cl.R - c2.R, cl.I - c2.1)

Code snippet Class.fs

In addition to being more functionally stylistic, the second example has no concurrency or mutable
state concerns.

As written, the operators defined are binary operators, meaning they require two arguments to pro-
cess; if the operator wants to be unary, meaning it takes only a single argument (like the negation
operator that takes a positive number and makes it negative, or vice versa), then the operator name
must be prefixed with a ~ in its definition:

\) [<Class>]

type Complex(r : int32, i : int32) =
Available for member c.R = ¢
d{m:;"gg[z“ member c¢.I = 1

static member (+) (cl : Complex, c2 : Complex) =

Delegates and Events [x149

new Complex(cl.R + c2.R, cl.I + c2.1)

static member (-) (cl : Complex, c2 : Complex) =
new Complex(cl.R - c2.R, cl.I - c2.1)
static member (~-) (c : Complex) =

new Complex(-(c.R), c.I)

Code snippet Class.fs

Although the usual warnings about trying to get too tricky or cute with operators applies, because
we can define new operators for given types, it offers an opportunity to create terse code that still
avoids the “accidental overloading of meaning” that frequently accompanied attempts to do opera-
tor overloading in C++. For example, if Persons are frequently being compared against one another
using the TComparable.CompareTo () interface method, we can define an operator that performs
that comparison tersely:

static member (<==>) (lhs : Person, rhs: Person) =
match (lhs.FullName.CompareTo (rhs.FullName)) with
| x when x > 0 || x < 0 -> x
| _ -> lhs.Age.CompareTo (rhs.Age)

This then allows us to do CompareTo () comparisons in traditional infix-style notation:
let compare = pl <==> p2

Some developers claim that this code is too cryptic, but clearly there is no predefined notation of an
<==> operator, which then neatly disposes of the principal traditional criticism of operator overload-
ing (that of confused semantics). In any event, as with all features of the language, F# developers are
not required to use this, but much of the existing language is defined using these constructs, and it
will likely be necessary to at least understand this syntax.

DELEGATES AND EVENTS

Delegates — in essence, managed function pointers — trace a history back to the earliest days of
programming, when C programmers would pass pointers-to-procedures to other routines to allow
those routines to “call back” without having predetermined knowledge of what procedures to call.
This technique was used for a number of years to allow for a primitive form of higher-order pro-
gramming (such as is discussed in Chapter 13) and to promote a notification mechanism while still
maintaining a decoupling between components. The latter approach is how most delegates are used
in .NET, typically in close cooperation with events, though this is changing as functional program-
ming styles begin to permeate through the ecosystem.

Events in F# classes come in two flavors. The first is the basic flavor of event as expressed in other
NET languages, the delegate-centric event, in which clients interested in receiving notifications
about an event register a delegate instance (obeying all the traditional laws of delegates, of course)
into a language-managed list of delegates via the implicit add and remove methods generated by a
language keyword. The other approach, however, is a more powerful mechanism that F# programs
can take advantage of some of the core capabilities of the F# language, such as event filtering and
lambda expressions, while still offering the same delegate-based functionality to other .NET lan-

looking t the F# .
guages looking to use the Aazggce Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

150

[XCHAPTERS CLASSES

Subscribing

The easiest way in which to interact with an event is to register with an existing event, such as
those exposed by various parts of the .NET Framework Class Library — one such event is the
ProcessExit event, on the AppDomain type, which is fired whenever the process in which the
AppDomain is being hosted exits. (For more on AppDomains and their relationship to processes, see
http://msdn.microsoft.com/en-us/library/system.appdomain.aspx.)

Obtaining the AppDomain is a no more difficult than calling the appropriate static property on the
AppDomain class:

let ad = System.AppDomain.CurrentDomain

When the appDomain has been retrieved, however, registering with the ProcessExit requires a del-
egate instance — one which wraps a method that takes an object and an Eventargs as parameters
and returns nothing, in particular. This means that somehow F# has to take an F# method and
wrap it into a delegate instance.

Normally, the F# developer will not need explicit delegates, for two reasons. First, because the F#
language supports functions as first-class citizens (as is shown in Chapter 13), less need arises to
wrap a method up in a delegate to pass it around, as is commonly seen in idiomatic C# and Visual
Basic. Second and more important, however, because the F# language was created to have full fidel-
ity and awareness of the underlying CLR platform, the F# compiler will often automatically handle
the conversion from an F# function or method to a .NET delegate silently and without explicit
programmer intervention. So, for example, if an F# type has a method that satisfies the parameter
requirements of the ProcessExit event, it can be passed directly to the event without any further
modification:

type Watcher() =
static member GoingAway (args : System.EventArgs) =
System.Console.WriteLine("Going away now....")

let ad = System.AppDomain.CurrentDomain
ad.ProcessExit.Add (Watcher.GoingAway)

In truth, many additional things are happening “under the hood” in the preceding code, but for
the vast majority of NET FCL events, this will be sufficient. Deeper understanding, however,
requires a deeper exploration of delegates before the F# support around delegates and events can be
appreciated.

Delegates

Formally, a delegate instance is an instance of the type System.Delegate, or as is most often the
case, of its subtype System.MulticastDelegate. Delegate instances are most often constructed by
the C# or Visual Basic compiler “behind the scenes,” in response to the developer using a language
keyword (such as delegate) indicating that a delegate is wanted. Delegates must be created to be

Delegates and Events [X151

of a particular declared delegate type, again typically declared using a keyword and a syntax that
looks much like a method or procedure declaration.

At first glance, F#’s delegate support is not much different than its sister languages’ support. Declaring
an explicit delegate type, for example, uses the delegate keyword and an explicit function signature:

type Notify = delegate of string -> string

In .NET parlance, this creates a class that inherits from System.MulticastDelegate, just as if it
had been declared in C# or Visual Basic. This means, among other things, that it has the implicit
Invoke and BeginInvoke/EndInvoke methods present on delegate types declared from those lan-
guages and can be used just as any other delegate instance can.

And, in keeping with the delegate spirit, creating an instance of this delegate type occurs just as it
does in other .NET languages — the object is new’ed, passing a reference to the method or function
to wrap when the delegate is invoked:

\) type Child() =
member this.Respond(msg : string) =
Available for System.Console.WriteLine("You want me to {0}? No!", msg)
download on "No !
Wrox.com :

J

let ¢ = new Child()

let np = new Notify(c.Respond)

let response = np.Invoke("Clean your room!")
System.Console.WriteLine (response)

Code snippet Class.fs

Notice, however, that where C# or Visual Basic makes the invocation of the delegate occur “just as
if” it were a method or function, F# requires the explicit method call to Tnvoke to invoke the del-
egate’s wrapped method.

Because this is an instance of MulticastDelegate, all the operations and behaviors familiar to
.NET developers — chaining them via the combine method, invoking them asynchronously via the
BeginInvoke/EndInvoke pair, and so on — are equally supported. Anything the C#-declared del-
egate can do, the F#-declared delegate can also do.

It is important to note, however, that if the F#-declared delegate is intended to be used from other
languages, the exact declaration of the delegate type is crucial. In particular, F# developers must pay
close attention to the difference between curried-argument and tupled-argument forms of delegates:

type CurriedDelegate = delegate of int * int -> int
type TupledDelegate = delegate of (int * int) -> int

Available for type DelegateTarget () =
dow"m;"ggl:" member this.CurriedAdd (x : int) (y : int) = x + y

member this.TupledAdd (x : int, y : int) = X + vy

Code snippet Class.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

152 [XCHAPTERS8 CLASSES

And attempting to use a method declared in one form with a delegate declared in the other form will
result in an error — curried-argument methods can only be used in curried-argument delegates and
ditto for tupled-argument methods and delegates:

let dt = new DelegateTarget ()

let cdl = new CurriedDelegate (dt.Curriedadd)

//let cd2 = new CurriedDelegate (dt.TupledAdd)
// will not compile

let tdl = new TupledDelegate (dt.TupledAdd)

//let td2 = new TupledDelegate (dt.CurriedAdd)
// will not compile

The F# compiler will quickly disabuse any developer trying to use one for the other, however, so in
practice this turns out to be less of a concern than it might seem at first. For the C# and Visual Basic
developer, these two delegate types will be night-and-day different, and no confusion will be appar-
ent. (Which form is easier to use from C# or Visual Basic is a subject of some debate and probably
will remain so.)

DelegateEvents

Creating a delegate-based event on an F# type requires the F# developer to create a member of
DelegateEvent type, which (because this is a generic) requires a type parameter describing the kind
of delegate to use as the event notification callback. So, for example, if an F# type, such as the fol-
lowing, modeling a rock band:

\) type RockBand(name : string) =
member rb.Name = name

Available for member rb.HoldConcert(city : string) =

download on ; : " f o

Wrox.com System.Console.WriteLine ("Rockin' {0}!")
Code snippet Class.fs

wants to notify its fan club:
\) type Fan (home string) =
member f.FavoriteBandComingToTown (city : string) =

Available for if home = city then

download on : : W : "

Wrox.com System.Console.WriteLine("I'm SO going!")

else
System.Console.WriteLine ("Darn")

Code snippet Class.fs

when it tours a particular city, it must expose an event of type ConcertHandler:
type ConcertHandler = delegate of obj * string -> unit
type RockBand(name : string) =
let concertEvent = new DelegateEvent<ConcertHandler> ()

member rb.Name = name

[<CLIEvent>]

Delegates and Events [X153

member rb.OnConcert = concertEvent.Publish

member rb.HoldConcert(city : string) =
concertEvent.Trigger ([| rb; city |])
System.Console.WriteLine ("Rockin' {0}!", city)

so that the Fan can register with the RockBand and receive those updates:

type Fan(home : string, favBand : RockBand) as f =
do
favBand.OnConcert.AddHandler (ConcertHandler (
f.FavoriteBandComingToTown))
member f.FavoriteBandComingToTown (_: obj) (city : string) =
if home = city then
System.Console.WriteLine("I'm SO going!")
else
System.Console.WriteLine ("Darn")

Such that now, creating a RockBand and a few Fans:

let rb = new RockBand("The Functional Ya-Yas")
let f1 = new Fan("Detroit", rb)

let f2 = new Fan("Cleveland", rb)

let £3 = new Fan("Detroit", rb)

rb.HoldConcert ("Detroit")

when the RockBand goes on tour, the Fans will be notified appropriately.

Of course, experienced .NET developers will find that the delegate type behind this event-handling
example to be of an inferior and older style — the preferred style, starting in .NET 2.0, is to use the
FCL-declared EventHandler type, which (were it to be declared in F#) looks like this:

type EventHandler = delegate of obj * System.EventArgs -> unit

Where the first parameter is the “sender” of the event (the RockBand) and the second parameter
is an EventArgs-derived class that serves as a collection of data elements describing the event.
So, adjusting to this more appropriate style, the preceding code transforms into something more
NET-ecosystem-friendly:

‘) type ConcertEventArgs(city : string) =
inherit System.EventArgs()

Available for member cea.City = city

download on

override cea.ToString() =
System.String.Format ("city:{0}", city)

Wrox.com

type RockBand(name : string) =
let concertEvent = new DelegateEvent<System.EventHandler> ()

member rb.Name = name

[<CLIEvent>]
member rb.OnConcert = concertEvent.Publish
member rb.HoldConcert (city : string) =
concertEvent.Trigger([| rb;
new ConcertEventArgs(city) |1])

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

154 [XCHAPTERS CLASSES

System.Console.WriteLine("Rockin' {0}!", city)

type Fan(home : string, favBand : RockBand) as f =
do
favBand.OnConcert.AddHandler (
System.EventHandler (f.FavoriteBandComingToTown))
member f.FavoriteBandComingToTown
(_ : obj)
(args : System.EventArgs) =
let cea = args :?> ConcertEventArgs
if home = cea.City then
System.Console.WriteLine("I'm SO going!")
else
System.Console.WriteLine ("Darn")

Code snippet Class.fs

The “_” in the FavoriteBandComingToTown method is the placeholder argument name, indicating
the method never uses it and therefore feels no need to give it a name, and the : 2> in the method
body is the dynamic downcast operator, as described more in Chapter 9, to convert the passed
parameter to a ConcertEventArgs type.

Stylistically, the event handler in the Fan class will often be an anonymous function, written like so:

type Fan(home : string, favBand : RockBand) as f =
do
favBand.OnConcert .AddHandler (
fun (_ : obj) (args : System.EventArgs) ->
let cea = args :?> ConcertEventArgs
if home = cea.City then
System.Console.WriteLine("I'm SO going!")
else
System.Console.WriteLine ("Darn")
)

There is no structural difference between the two approaches (anonymous event handler vs. named
method), so developers should choose whichever appeals more to their sense of aesthetics.

Beyond DelegateEvents: Events

As it stands, the support for events in F# demonstrated thus far is somewhat lukewarm — a good
argument could be made that the support for events found in C# or Visual Basic rivals or even sur-
passes this. However, F# also adds additional support for handling events in a more functional style
via the Event module, such as processing events in a stream using pipelines and filters. (Currying is
covered in Chapter 13, and pipelining is covered in Chapter 17.)

For example, the Event .add function will take a function (member or otherwise) and register it on
the exposed event, and Event . filter will take a function yielding a Boolean result, and only pass
the event on if the filter function returns true:

\) rb.OnConcert
|> Event.filter
Available for (fun evArgs ->

download on B .
Wrox.com let cea = evArgs :?> ConcertEventArgs

Access Modifiers [X155

if cea.City = "Sacramento" then false
// Sacramento is dead to rock bands

else true)

|> Event.add
(fun evArgs ->

let cea = evArgs :?> ConcertEventArgs

System.Console.WriteLine("{0} is rockin' {1}",
rb.Name, cea.City))

Code snippet Class.fs

This can create powerful event-handling effects, particularly given the various functions found in
the Event module. F# developers doing event-handling would be well-advised to experiment with
the functions found there before writing significant amounts of event-handler code.

Events can also be exposed to F#-only code by constructing an instance of the Event<> type and
registering functions to be called when the event is triggered (via the event’s Trigger method) by
calling Event .add, in much the same way that DelegateEvent operates. The Event object has the
advantage that it is simply an object, and not a keyword or special language element, but has the
disadvantage that it works only with other F# code.

ACCESS MODIFIERS

Access modifiers are used to control the visibility of members within a type, ranging from “acces-
sible to any element in the CLR process space” (public), to “accessible to elements only within
this same type” (private). As has already been seen, however, normally the F# compiler infers an
appropriate default access modifier for most members, making the need for an explicit access modi-
fier unnecessary.

When more control over the access control of a particular member is wanted, an access modifier can
appear on the member declaration, after the member keyword but before the member name (and self-
identifier prefix, if this is an instance member):

[<Class>]
type Sport (name) =
member private p.Rules
with get() = ""

The available access control modifiers are more or less synonymous with the list of modifiers found
in the C# and Visual Basic languages:

© public: No restrictions on access; any other .NET program element can find and use this
element.

private: Access is permitted only from the enclosing type (or module or namespace).

internal: Access is permitted only from the assembly in which this element is defined.

In addition, the F# language implementers have already earmarked the keyword protected, pre-
sumably to introduce it into a future version of F# to serve as an access modifier similar to its C#

cousin (access permitted only from the enclosing type or one of its derived types).
Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

156 [XCHAPTER8 CLASSES

F# permits access modifiers on a variety of different parts of the type, including methods, properties
(both get and set clauses, which may not need be set at the same level of accessibility), constructors
(except the primary constructor), or fields. F# requires that any let bindings inside the class must
always be internal, so no access modifier is ever allowed on these.

There are a few syntactic restrictions in certain places. In the case of constructors, the access modi-
fier appears before the new keyword. When used on a val-declared field, the access modifier must
appear after the “mutable” keyword (if present).

F# also permits types to be decorated with access modifiers, in much the same way that individual
members of a type can be decorated. In the case of a type, the access modifier appears after the type
keyword but before its name:

[<Class>]
type internal Sport (name) =
member p.Rules
with get() = ""

In the case of a “private” type, the type will not be visible outside of the file in which it is declared;
the reason for this will be made clearer in Chapter 11 when we talk about modules and namespaces.
In addition, the primary constructor of a type will be granted the same visibility as that of the type
itself, because it’s exceedingly rare that a type would want a primary constructor’s accessibility to be
different than the type’s.

The default accessibility of declared elements in an F# class is as follows:

J

[<Class>]

type (* public *) ExampleClass(fieldl : string) =
Available for [<DefaultValue>]
download on val mutable (* private *) valField : string

Wrox.com

// Always private
let mutable mutField2 = "Changeable"
let helper = fieldl + ", helped"

(* public *)
new () =
ExampleClass("")
member (* public *) e.Property
with (* public *) get() = fieldl
member (* public *) e.ReadWriteProp
with (* public *) get() = mutField2
and (* public *) set(value) = mutField2 <- value

Code snippet Class.fs

In general, as mentioned, given that member-declared elements are marked public by default and 1et
bindings as internal (that is, assemblywide accessible) by default, most F# developers find that they
will not be reaching for access modifiers nearly as often as their C# or Visual Basic brethren.

Type Extensions [x157

Although unusual, it is possible to define private constructors on types, even the primary construc-
tor, using the following syntax:

[<Class>]

type PrivatePerson private(fn, 1ln, a) =
private new() = PrivatePerson("", "", 0)
static member Create(fn, 1ln, a) = new PrivatePerson(fn, 1n, a)
static member Create() = new PrivatePerson/()

Typically, the private constructor is used to prevent direct construction and instead defer construc-
tion through a “factory method,” such as that defined in the preceding example.

TYPE EXTENSIONS

Historically, object-oriented developers have found themselves caught on the horns of dilemma: To
make it easiest to maintain code, it’s best to encapsulate details about the class, but frequently that
same maintenance requires extending a class in ways the class creator never intended and therefore
never provided easy access to. As a result, some developers have taken to such drastic (and counter-
intuitive) actions such as declaring all fields and methods as “protected” at the least, so as to allow
maintainers to extend a class and have full access to the internals of that class. Unfortunately, such
actions have historically led to unmaintainable code over time, because now the guarantees that
encapsulation was supposed to provide (reassurance that all the code that modifies a given field is
contained inside one class) are now broken.

With the introduction of C# 3.0, Microsoft changed the game somewhat, introducing extension
methods, static methods defined on a third-party class that can appear as if they were declared

on the original class, without requiring an inheritance relationship. F# provides a similar feature,
known as type extensions, to do much the same kind of thing, but in a slightly simpler manner and
with greater capability.

Assume an F# developer has found necessary reason to extend a class defined like this:

[<Class>]

type Student (name : string, subject : string) =
member s.Name = name
member s.Subject = subject

If the code is being extended within the same namespace or module as the original definition,
then the extension is called an intrinsic extension (because the code extension is intrinsic to the
same unit where it is being defined), and basically the compiler will stitch together the defini-
tions into a single type in much the same way it does for partial type definitions in C# or Visual
Basic. Otherwise, the extension code must be in a module (see Chapter 11 for a discussion on the
differences between namespaces and modules), and it is called an extension member. When the
module containing an extension member is opened, that member becomes available as if it were
an instance or static method defined on the type originally, again much like the C# 3.0 extension
method facility.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

158 [XCHAPTERS CLASSES

Syntactically, defining a type extension looks something like a type definition, with some
restrictions:

type Student with
member s.FullDescription = s.Name + " " + s.Subject

Because the compiler is playing some syntactic games here, and not changing the basic definition
of the type’s internals, no new fields may be added to the type, whether as val declarations or let
declarations.

Type extensions can add constructors:

type Student with
new() = Student("", "")
member s.FullDescription = s.Name + " " + s.Subject

And although it doesn’t make much sense to do so without the ability to define fields, it’s possible to
introduce constructors that take additional parameters beyond the constructors defined on the origi-

nal type:
‘) type Student with
new() = Student("", "")
Available for new (name, subject, school) =
download on .
Wrox.com Student (name, subject)i

member s.FullDescription s.Name + " " + s.Subject

Code snippet Class.fs

Static members (and, by extension, “operators”) are also fair game, as are instance and static
methods.

Because type extensions are not part of the type, the type extension has no additional access to pri-
vate members as any other method or function of any other type would have — that is to say, it has
none and attempts to reference private members will generate a compile-time error.

Because this functionality is effectively a product of the compiler, type extensions can operate on
any type defined in the .NET environment, including those defined in the Base Class Library:

type System.String with
member s.IsUpper =
s.ToUpper() = s

However, in general, type extensions should be treated with care, because now functionality relating
to a class is being “spread out” over several different locations, which contradicts the basic point of
object-oriented development, to gather up all the concerns relating to a given idea into a single loca-
tion (the class). As with many language features, when used judiciously, type extensions can simplify
code significantly, but when flagrantly tossed around, type extensions can render otherwise well-
written code into a mess that not even a mother would love (or could read).

Summary [X159

SUMMARY

F# supports a full range of object-oriented features for defining traditional class design, and a few
new ideas that either are missing entirely from its siblings in the Visual Studio environment or are
just being introduced. However, our romp through the object-oriented world of F# is not yet complete
because F# also supports inheritance, and no discussion of object-orientation would be complete
without it.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Inheritance

WHAT'’S IN THIS CHAPTER?

Understanding inheritance in F#
Understanding field and constructor invocation
Using casts

Defining and using interfaces

@ © 6 o6 ©

Applying object expressions

Within the object-oriented parlance, inheritance is frequently used to mean implementation inher-
itance, where a given type can express a relationship to another type, effectively importing all the
data and behavior of that parent type. Originally thought (in Smalltalk and C++) to be a staple of
the object-oriented design process, then later criticized and revamped to split into implementation
and interface inheritance in languages such as Java and C#, inheritance nonetheless represents a
powerful and useful technique for not only expressing relationships between types, but also in
ensuring that behavior relating to a group of types remains defined in precisely one place. As a
full-fledged member of the object-oriented family of languages, F# offers full support for inheri-
tance between types, with the additional “twists” that come with a new language.

BASICS

Assume that there is a base type defined in F# (or, if wanted, in another .NET language),
something along the lines of:

\) [<Class>]
type Person(fn, 1ln, a) =

Available for member p.FirstName = fn

download on B

Wrox.com member p.LastName = 1ln
member p.Age = a

Code snippet Inberitance.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

162 [XCHAPTER9 INHERITANCE

We can define a new type that inherits from this base type by referencing it in the opening lines of
the derived type definition:

\) [<Class>]
type Student (fn, 1n, a, sub, sch) =

Available for inherit Person(fn, 1n, a)

download on
Wrox.com

download on
Wrox.com

member p.Subject = sub
member p.School = sch

Code snippet Inberitance.fs

This establishes an IS-A relationship between the derived type and the base type, such that any
members defined on the base type are also accessible in the derived type, in addition to those mem-
bers defined on the derived type, as expected:

let s = new Student("Ted", "Pattison", 50, "Beer",
"DevelopMentor")
System.Console.WriteLine("{0} {1} attends {2} and studies {3}",
s.FirstName, s.LastName, s.School, s.Subject)

By default, as is the norm for any language running on top of the .NET framework, if a class does
not explicitly define an inheritance relationship, it inherits from the ultimate base class, System.
Object. This means that every type in F#, like every type defined in C# or Visual Basic, ultimately
extends that core base type, either directly or indirectly through its parent type.

Any type that derives from a base type can be passed where a base type is expected, and this serves
as the basis for classic object-oriented polymorphism. Normally, F# type inference can make this
less obvious than what is seen in other object-oriented languages, but type descriptors can make this
relationship obvious:

O

[<Class>]
type Person(fn, 1ln, a)
Available for member p.FirstName = fn
member p.LastName = 1n

member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)

Code snippet Inheritance.fs

Passing a student in for the expected Person works as expected:

let s = new Student ("Ted", "Pattison", 50, "Beer",
"DevelopMentor")

let p = new Person("Ted", "Neward", 38)

p.Greet (s)

Note that, as previously mentioned, the base type could easily be one defined in C# or Visual Basic
and the derived type in F#, or vice versa. With little restriction, inheritance is free to operate across
language lines on the CLR.

Basics [x163

Fields and Constructors

Frequently, a derived type introduces not only new methods and properties, but also new data ele-
ments to be stored within the object instance. In F#, because the data elements are often introduced
via the primary constructor, the syntax for introducing new data elements on the derived type is
remarkably simple, as shown here:

‘) [<Class>]

type Person(fn, 1ln, a) =
Available for member p.FirstName = fn
dow“"g;“:gn(:" member p.LastName = 1ln

member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)

[<Class>]

type Student (fn, 1n, a, sub, sch) =
inherit Person(fn, 1n, a)
member p.Subject = sub
member p.School = sch

Code snippet Inheritance.fs

Just as the primary constructor in the base class silently introduces fields to hold those constructor
values throughout the lifetime of the object instance, the primary constructor in the derived class
also introduces fields. However, for those data elements that are passed up to the base class con-
structor through the inherit clause, the F# compiler is smart enough not to re-introduce the same
fields twice; in other words, in the preceding example, the F# compiler knows that the first three
parameters are destined for the base class, and as a result the student type has two fields defined
within it, rather than five.

However, if the derived type references any of the parameters defined in the constructor, the story
changes:

\) [<Class>]
type Student (fn, 1n, a, sub, sch) =

Available for inherit Person(fn, 1n, a)
download on _ W " "
Wrox.com member s.FormalName = fn + + of + sch

member s.Subject = sub
member s.School = sch

Code snippet Inberitance.fs

Here, because a data element defined in the primary constructor is directly referenced within the
definition of the derived class, the F# compiler creates a new field in the derived class to hold that
data. This means that now the data is being duplicated — once in a field in the base part of the
object, and once in a field in the derived part of the object.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

164 [XCHAPTER9 INHERITANCE

To avoid this, the derived class can use the property defined on the base class:

[<Class>]

type Student (fn, 1n, a, sub, sch) =
inherit Person(fn, 1ln, a)
member s.FormalName = s.FirstName +
member s.Subject = sub
member s.School = sch

wom4om of v 4 gch

This will also have the nice effect of ensuring that any additional logic around the field defined in the
property-get clause is being invoked, such as any calculation, lazy-resolution, or caching behavior.

As with any inheritance relationship in .NET, the derived class must invoke a base class constructor,
but any such constructor is fair game:

\) [<Class>]
type Person(fn, 1ln, a) =

Available for new() = Person("", "", 0)
download on : _
Wrox.com member p.FirstName = fn

member p.LastName = 1n
member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)

[<Class>]

type Student (fn, 1n, a, sub, sch) =
inherit Person/()
member s.FormalName = s.FirstName +
member s.Subject = sub
member s.School = sch

wom 4om of v 4 gch

Code snippet Inheritance.fs

And of course, the derived type is free to define its own constructors beyond the primary construc-
tor, delegating to the primary constructor of the derived type (which then defers to the base type
constructor, and so on up the inheritance chain):

\) [<Class>]
type Student (fn, 1n, a, sub, sch) =
Available for inherit Person()
dm:;":gr:“ new() = Student("", "", 0, "", "")
new(fn, 1ln, a) = Student(fn, 1ln, a, "", "")
member s.FormalName = s.FirstName + " " + " of " + sch

member s.Subject = sub
member s.School = sch

Code snippet Inberitance.fs

If the derived type wants any private 1et-bindings or do expressions, they appear after the inherit
clause but before any member declarations:

\) [<Class>]
type Student (fn, 1ln, a, sub, sch) =
ljAvail?blt(aiiur inherit Person()
ownload on _
Wrox.com let gpa = 0.0

do System.Console.WriteLine ("Whoo-hoo! College!")

Basics [x165

new() = Student("", "", 0, "", "")
new(fn, 1ln, a) = Student(fn, 1n, a, "", "")
member s.FormalName = s.FirstName + " " + " of " + sch

member s.Subject = sub
member s.School = sch

Code snippet Inberitance.fs

If the derived type provides a primary constructor, there is no way for a derived type constructor
to directly invoke a base type constructor — all invocation must be done through the primary con-
structor on the derived type, which then defers to the base constructor of choice.

But in cases where a primary constructor is missing or left out for the derived type, the derived type
must specify in its own constructor which base type constructor to invoke:

‘) [<Class>]
type Person2 =

Available for val firstName : string

download on . ;

Wrox.com val lastNa@e : string
val age : int32
new(fn, 1n, a) = { firstName=fn; lastName=1ln; age=a }
new() = { firstName = ""; lastName = ""; age = 0 }

member p.FirstName = p.firstName
member p.LastName = p.lastName
member p.Age = p.age

[<Class>]
type Student2 =
inherit Person2
val subject : string
val school : string
new(fn, 1n, a, subj, sch) =
{ inherit Person2(fn, 1ln, a); subject = subj; school = sch}
member s.Subject = s.subject
member s.School = s.school

Code snippet Inheritance.fs

Note that the presence or absence of a primary constructor in the base type makes no difference to
the derived type:

\) [<Class>]
type Person2 (fn, 1ln, a) =

Available for let firstName = fn
download on _
Wrox.com let lastName = 1n
let age = a
new() = Person2("", "", 0)

member p.FirstName = firstName
member p.LastName = lastName
member p.Age = age

[<Class>]
type Student2 =
inherit Person2

val subject : string)
Advance Review Copy - Not For Resale

If you enjoyed this book, post a review at your favorite online bookseller.

166 [XCHAPTER9 INHERITANCE

val school : string
new(fn, 1n, a, subj, sch) =
{ inherit Person2 (fn, 1n, a); subject = subj; school = sch}
new() =
{ inherit Person2(); subject = ""; school = "" }
member s.Subject = s.subject
member s.School = s.school

Code snippet Inberitance.fs

However, given the prevalence and usefulness of primary constructors, it’s not likely that F# devel-
opers will see this form used a great deal.

OVERRIDING

As previously mentioned, when a type inherits from a base type, it picks up all the behavior of that
base type. For example, every type defined in F# will automatically inherit the ToString () method
(among others) from the system.0Object base type, because every class in the .NET ecosystem ulti-
mately inherits from System.object. However, the default behavior of Tostring () leaves something
to be desired for most types, as it usually just prints out the type name:

let p = new Person("Ken", "Sipe", 40)
let p_str = p.ToString/()
System.Console.WriteLine (p_str)

// prints "Inheritance+Person"

This behavior, although nice to have picked up without requiring any additional work on our part,
is not nice enough to keep.

Fortunately, as most C# or Visual Basic developers already know, the .NET environment allows
derived classes to override (replace) the behavior of a base type method by defining the same method
on the derived type, and F# is no different:

‘) [<Class>]
type Person(fn, 1ln, a) =

Available for new() = Person("", "", 0)
download on member p.FirstName = fn
Wrox.com

member p.LastName = 1n
member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)
override p.ToString() =
System.String.Format (" [Person: {0} {1} {2}1",
fn, 1n, a)

Code snippet Inberitance.fs

The key difference to a method attempting to override a base type method and defining a new
method member is the use of the keyword override in place of member. The compiler then ensures

Overriding [X167

that the method name and its signature are exactly identical to a method defined as overridable in
the base type, and if not, it will signal an error.

y Note that it is still possible to introduce a new method of the same name and
signature, but doing so “hides” the base type method of that name and generates
a warning from the compiler. This is sometimes desirable bebavior, referred to as
shadowing, but usually means the developer didn’t realize said method already
exists. As a general practice shadowing should be avoided.

If the overriding method body wants to invoke the base type method body, it can do so using the
predefined keyword base to refer to the base type:

[<Class>]
type Person(fn, 1ln, a) =
new() = Person("", "", 0)

member p.FirstName = fn
member p.LastName = 1n
member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)
override p.ToString() =
let typename = base.ToString()
System.String.Format ("[{3}: {0} {1} {2}]",
fn, 1In, a, "")

However, doing so is an error unless the type has an explicit inherit clause; in other words, the
preceding example is an error until it is modified to read:

\) [<Class>]
type Person(fn, 1ln, a) =

Available for inherit System.Object ()
download on _ wnoww
Wrox.com new() = Person("", , 0)

member p.FirstName = fn
member p.LastName = 1n
member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)
override p.ToString() =
let typename = base.ToString()
System.String.Format ("[{3}: {0} {1} {2}]",
fn, 1In, a, "")

Code snippet Inheritance.fs

Note that other members, namely properties, can also be overridden, just as methods can. The
syntax for doing so remains identical to that shown here. (That is, instead of using member, use

override.)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

168 [XCHAPTER9 INHERITANCE

Abstract Members

Frequently, a base type want to ensure that derived types create custom behavior specific to

them — in F#, this is done via the abstract keyword, and requires a slightly different syntax
than has been seen thus far. Specifically, designating a member as abstract requires that the type
descriptor of the member be provided, which in the case of a method is its method signature:

J [<Class>]
type Person(fn, 1ln, a) =

Available for inherit System.Object ()
download on new() = Person("", "", 0)
Wrox.com

member p.FirstName = fn
member p.LastName = 1n
member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)
override p.ToString() =
let typename = base.ToString()
System.String.Format ("[{3}: {0} {1} {2}1",
fn, 1n, a, "")
abstract Work : unit -> unit

Code snippet Inberitance.fs

The syntax for a method signature is slightly different than might be expected — as with most lan-
guages, it describes the parameters and return type of the method, but instead of comma-separated lists
of parameters wrapped by parentheses (such as is seen in C#), F# uses an arrow-based notation, with
each parameter separated by a right-arrow and the return type appearing at the end of the notation.

This arrow-based notation is in keeping with F#’s historical roots, namely

that of the ML language. Interested readers can either read Ullman’s The ML
Programming Language for why this syntax makes sense, or flip forward to the
discussion on curried methods in Chapter 13.

If the type defines an abstract method, such as the previous example, then the type itself must be
marked with the abstractclass attribute instead of the class attribute. In addition to marking the
class with an abstract modifier at the CLR level, the F# compiler and .NET runtime prevent direct
instantiation of this type, and derived types must provide an overridden method implementation of
all abstract methods before they can be instantiated:

\) [<AbstractClass>]

type Person(fn, 1ln, a) =
Available for inherit System.Object ()
download on _ wnoww
Wrox.com // new() = Person("", , 0)

member p.FirstName = fn

member p.LastName = 1n

member p.Age = a

member p.Greet (other : Person) =

Overriding [x169

System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)
override p.ToString() =
let typename = base.ToString()
System.String.Format ("[{3}: {0} {1} {2}]",
fn, 1n, a, "")
abstract Work : unit -> unit

[<Class>]
type Student (fn, 1n, a, sub, sch) =
inherit Person(fn, 1ln, a)
let gpa = 0.0
do System.Console.WriteLine ("Whoo-hoo! College!™")

new() = Student("", "", 0, "", "")
new(fn, 1ln, a) = Student(fn, 1n, a, "", "")
member s.FormalName = s.FirstName + " " + " of " + sch

member s.Subject = sub

member s.School = sch

override s.Work() =
System.Console.WriteLine ("Studying!")

Code snippet Inberitance.fs

Note that the second constructor defined in the preceding base type must now be commented out,
because the base type is defined as abstract and therefore cannot be instantiated. The primary con-
structor, on the other hand, remains unaffected.

Default

If a type wants to provide opportunity for derived types to customize a method, yet still provide an
implementation that derived types can use as is without customization, F# allows the type to define
a “default” member to go along with the abstract member declaration. This pair of actions corre-
sponds to the virtual keyword in C# or the overridable keyword in Visual Basic:

\) [<Class>]
type Person(fn, 1ln, a) =

Available for inherit System.Object ()
download on _ wn o
Wrox.com new() = Person("", , 0)

member p.FirstName = fn
member p.LastName = 1n
member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)
override p.ToString() =
let typename = base.ToString()
System.String.Format ("[{3}: {0} {1} {2}]",
fn, 1n, a, "")
abstract Work : unit -> unit
default p.Work() =
System.Console.WriteLine ("Working!")

Code snippet Inheritance.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

170 [XCHAPTER9 INHERITANCE

Both the abstract declaration and the default implementation are required to mark this as an
overridable method. Omitting the abstract declaration will cause the compiler to complain about
not finding an abstract member to override with the default implementation, and omitting the
default implementation will require the type to be marked as AbstractClass to avoid an error.

As previously mentioned, any member (method or property) can be marked as abstract, and simi-
larly, any member can be implemented with a default implementation:

[<Class>]
type Person(fn, 1ln, a) =

inherit System.Object ()

new() = Person("", "", 0)

member p.FirstName = fn

member p.LastName = 1n

member p.Age = a

member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",

other.FirstName, p.FirstName)

override p.ToString() =
let typename = base.ToString()
System.String.Format ("[{3}: {0} {1} {2}]",

fn, 1In, a, "")

abstract Work : unit -> unit

default p.Work() =
System.Console.WriteLine ("Working!")

abstract Salary : int32 with get

default p.Salary
with get() = 0

Property members, as always, can be specified as get, set, or both and can even be “split” across
types, one implemented on the base type and one on the derived:

\) [<AbstractClass>]

type Person(fn, 1ln, a) =
Available for inherit System.Object()
download on : _
Wrox.com member p.FirstName = fn

member p.LastName = 1n
member p.Age = a
member p.Greet (other : Person) =
System.Console.WriteLine ("Howdy, {0}, from {1}!",
other.FirstName, p.FirstName)
override p.ToString() =
let typename = base.ToString()
System.String.Format ("[{3}: {0} {1} {2}]",
fn, 1n, a, "")
abstract Work : unit -> unit
default p.Work() =
System.Console.WriteLine ("Working!")
abstract Salary : int32 with get, set
default p.Salary
with get() = 0

[<Class>]
type Student(fn, 1ln, a, sub, sch) =

Casting [X171

inherit Person(fn, 1ln, a)
let gpa = 0.0
do System.Console.WriteLine ("Whoo-hoo! College!™")

new() = Student("", "", 0, "", "")
new(fn, 1ln, a) = Student(fn, 1n, a, "", "")
member s.FormalName = s.FirstName + " " + " of " + sch

member s.Subject = sub
member s.School = sch
override s.Work() =
System.Console.WriteLine ("Studying!")
override s.Salary
with set(v) = System.Console.WriteLine (v)

Code snippet Inberitance.fs

It’s not often that splitting up the behavior of a property is necessary, but it’s always comforting to
know that such a solution is possible for those odd situations where it is needed.

For the CLR-trivia-minded, the CLR actually supports an even deeper “split,”
in that IL allows for the definition of a property where a get is abstract/virtual
and a set is not, or vice versa. Earlier versions of F# accidentally supported this,
but this was removed in Beta 2.

CASTING

Frequently, when using inheritance, it’s important to know whether a given object instance is of a
particular derived type; remember, in the .NET environment, a reference to an object isn’t always
pointing to the object of that derived type, because, as described earlier, a derived type object can be
passed anywhere a base type is expected:

[<Class>]
type Person(fn, 1ln, a) =
// . . . as above
[<Class>]
type Student (fn, 1n, a, sub, sch) =
// . . . as above
let s = new Student ("Ted", "Pattison", 50, "Beer",
"DevelopMentor")
let p = new Person("Ted", "Neward", 38)
p.Greet (s)

In this particular example, the method defined has no real idea what kind of object is passed in,
other than that at some point in its inheritance chain, Person is involved. To discover more about
the actual object passed in, F# permits several different kinds of casting operations, using different
cast operators, depending on the exact kind of cast desired.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

172 [XCHAPTER9 INHERITANCE

Upcasting

Normally, in an object-oriented language, casting an object to a base type reference is not neces-
sary, because the language can do that kind of conversion automatically, just as it does with ints

to longs, for example. And, normally, in a type-inferenced language, the compiler can be trusted to
infer the right kind of reference when an object is used or created.

Occasionally, however, it’s necessary to work with a reference of a base type, and because F# doesn’t
do any implicit conversion, problems can emerge. For example, simply trying to create a reference to
a base type and point it to a derived type object will fail:

// This will NOT compile
let p : Person = new Student("Ken", "Sipe", 40)

Despite that student inherits from Person, F# will not allow this to compile. Technically, this is an
illegal statement in any language — because Person and Student are not the same type, it shouldn’t
compile. For the most part, developers have never seen this as an error only because C# and Visual
Basic allow for an implicit conversion — the upcast from student to Person.

Because F# doesn’t do any implicit conversion, an explicit upcast is necessary. Doing this in F# uses
an operator (:>) and the type to convert to, like this:

let p = new Student ("Ken", "Sipe", 40) :> Person

Like almost all other language bits in F#, use of the :> is an expression — it returns a reference

of the type described on the right side. The left operand is the object or reference upon which to
perform the cast, and the right operand is the type to which to cast. The correctness of this cast is
checked at compile-time, because the compiler should have all the information by which to ensure
that this is a legal operation, so this cast will either succeed or fail to compile.

Although not as commonly used, the :> operator can also be replaced by upcast, whose syntax
looks somewhat similar to that of the operator:

let p2 : Person = upcast new Student("Ken", "Sipe", 40)

In this case, however, the type to which the reference is being converted is inferred from the left
side of the expression, making upcast slightly more terse than the operator equivalent. However,
in practice, :> shows up more often in F# code, because the type often cannot be inferred correctly
when using upcast.

Downcasting

The opposite of the upcast, of course, is the familiar downcast, known and loved (and hated) by
millions of developers, wherein the language attempts to take an object of a derived type being ref-
erenced by a base type and produce a reference to the derived type. In F#, this is done again with an
operator, the :?> operator:

let p : Person = new Student("Ken", "Sipe", 40) :> Person
let s : Student = p :?> Student

Casting [xX173

Because the legitimacy of this cast cannot be known until runtime, F# programmers should put
the same kind of defensiveness around this operation as C# and Visual Basic developers do around
any casts performed there. In the event the downcast fails, the usual .NET classCastException is
thrown.

To avoid the potential classCastException, an object can be tested to see if it will be successfully
castable using the : 2 operator. It’s used much the same way as the downcast operator, except that it
returns a bool value indicating whether the cast is successful.

Like upcasting, downcasts can also be written in a keyword-like form using downcast:

let p2 : Person = upcast new Student ("Ken", "Sipe", 40)
let s2 : Student = downcast p2

Again, as with upcast, the use of downcast is relatively rare and is only useful in those situations
where the type to which to cast is easily inferable from the left side of the expression, which usually
acts enough of a restriction to make the : ?> operator preferable.

Flexible Types

Because upcasting is automatically done in most of the other languages running on the .NET plat-
form, much of the .NET Framework makes heavy use of base-type parameters in its methods. In
many cases, F# developers will want to create classes and methods that allow for similar kinds of
functionality, but the need to explicitly perform the upcast will feel tedious and annoying after a
short while.

Fortunately, F# supports a special kind of reference type designation known as the flexible type con-
straint. In code, it is abbreviated as #Person and indicates that any type that inherits from Person is
acceptable as a parameter:

type Printer() =
member this.PrintName(p : #Person) =
System.Console.WriteLine("{0}", p.FirstName)

This then allows the use of any object that has the type in its pedigree or is of the exact type specified:

// using "p" and "s" from earlier...
let printer = new Printer ()
printer.PrintName (p)
printer.PrintName (s)

(Formally, when declaring the reference, the F# language is actually declaring the reference as a
generic parameter with a type constraint using the upcast operator, a la:

type Printer() =
member this.PrintName(p : #Person) =
System.Console.WriteLine("{0}", p.FirstName)
member this.GenericPrintName(p : 'a when 'a :> Person) =
System.Console.WriteLine("{0}", p.FirstName)

Generics are covered in more detail in Chapter 10.)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

174 [XCHAPTER9 INHERITANCE

Boxing and Unboxing

One of the novel features of the CLR was its use of a unified type system tree, meaning all types
through the CLR inherit from a single base class (System.0bject, also known as obj in F#), includ-
ing all primitive types. Given that 0bject has a number of methods on it, requiring some kind of
method dispatch table and an object “sync lock,” implying overhead per object, and that primitive
types don’t want to carry any additional overhead, the CLR had to come up with some particular
magic to make the unified type system work well in the majority of cases.

The solution, as well-read C# and Visual Basic developers already know, was to create two instruc-
tions in the CLR, box and unbox, which convert a value type (the CLR term for types that should
act as primitive types do — see Chapter 3 for details) into an object reference when necessary, and
vice versa. Normally, these instructions are automatically inserted into the compiled code by the C#
or Visual Basic compilers, because both of those languages support automatic implicit conversions.
Because F# doesn’t support automatic implicit conversions, F# developers will sometimes find the
need at times to do the boxing or unboxing “by hand,” which is done using the F# language key-
words box and unbox, respectively:

let ol = box 42

System.Console.WriteLine("oi's type is {0}", oi.GetType())
let i : int32 = unbox oi

System.Console.WriteLine("i's type is {0}", i.GetType())

Like the downcast instruction, the unbox call infers the type to which to unbox from the left side of
the expression, in this case an int32.

Equality, Hashing, and Comparison

Because all types in the CLR ultimately inherit from the System.0bject base type, and because two
of the four methods defined on that type deal with object comparison (Equals and GetHashCode),
the .NET programmer is frequently presented with the requirement to define appropriate implemen-
tations of these methods on their custom type definitions. Because of the ubiquity of defining these
methods, F# provides some additional support to make it easier to define them.

Naturally, the F# developer is always free to define overridden implementations of the two methods
directly (with some restrictions, as described here), but F# also provides several custom attributes to
let the F# developer tell the compiler exactly what kind of equality and comparison semantics this
type is supposed to have:

Microsoft.FSharp.Core.ReferenceEquality
Microsoft.FSharp.Core.StructuralEquality
Microsoft.FSharp.Core.CustomEquality
Microsoft.FSharp.Core.NoEquality
Microsoft.FSharp.Core.StructuralComparison

Microsoft.FSharp.Core.CustomComparison

® © 6 6 o o

Microsoft.FSharp.Core.NoComparison

Casting [xX175

At the heart of this discussion is whether the type being defined should be treated as an
object — meaning it has an explicit sense of identity, and users will want to differentiate
between two objects even if they have the same contents — or as a value — meaning only the
contents of the instance are important, and if two objects have the same contents, then they
are equivalent even if they are separate objects. Normally, developers use custom overrides of
Object.Equals to define some kind of structural equivalence and/or comparison and rely on
the default behavior of object.Equals (or the static method object .ReferenceEquals) to
provide identity equality tests. But F#’s introduction of tuple types and discriminated unions
throws that somewhat akimbo — if developers create a discriminated union, for example, they
may want more control over how the F# language treats it for comparison and/or equality
purposes.

The first two generate Equals () methods that will provide equality implementations similar to what
.NET developers are used to for reference types (those that inherit from system.object directly)
and value types (those that inherit from System.valueType, such as types using struct in C# or
Structure in Visual Basic), respectively.

In other words, ReferenceEquality will generate an Equals method that will return true only if
the two references point to the same object. (In fact, ReferenceEquality generates no new methods
for Equals or GetHashCode, defaulting to those inherited from System.0bject.)

Using structuralEquality will force the F# compiler to generate an Equals method that will com-
pare each of the fields in the type for equality, which implies that each of those fields must also have
StructuralEquality semantics. If StructuralEquality is placed on a nonvalue type definition,
the F# compiler will reject it.

If customEquality is used, then the compiler will enforce the presence of an Equals method on that
type. If the F# developer provides a custom Equals method, implements the System. IEquatable or
the System.Collections.IStructuralEquatable interfaces, the F# compiler will insist on having the
CustomEquality attribute defined on that type.

NoEquality, as might be inferred, does nothing, but the compiler also takes note of this and fails
the use of this type anywhere an “equality” type constraint is required. (Type constraints are
described in more detail in Chapter 10.)

StructuralComparison, as its name infers, will generate an implementation of System
.IComparable that “does the right thing,” meaning it compares each of the fields and returns -1,
0, or 1 based on the greater-or-lesser comparison of each of those fields, so that (for example) two
tuples, when compared, behave as would be expected:

let t1 = (1, 1)
let t2 = (1, 1)
let t3 = (1, 2)

System.Console.WriteLine("{0}", (tl = t2)) // true
System.Console.WriteLine("{0}", (tl < t3)) // true
System.Console.WriteLine("{0}", (t3 < tl)) // false

NoComparison generates nothing, and customComparison assumes (and enforces) that a custom
implementation of the System.IComparable interface will be defined on the type.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

176 [XCHAPTER9 INHERITANCE

Because of the particular restrictions around CLR value and reference types, and the various
assumptions about how equality and comparison works, this means that these attributes can be used
only in particular combinations on particular types:

Nothing

[<NoComparison>]

[<NoEquality; NoComparison>]

[<CustomEquality; NoComparison>] On.aStNMIuraltype
[<ReferenceEquality>] on a non-Struct structural type
[<ReferenceEquality; NoComparison>] on a non-Struct structural type
[<StructuralEquality; NoComparison>] on,asnlmturaltype
[<CustomEquality; CustomComparison>](nlasUlKIuraltype

[<StructuralEquality; CustomComparison>] on a structural type

© © 6 © © 6 © o o

[<StructuralEquality; StructuralComparison>] on a structural type

As can be seen, these attributes are mostly useful only for structural types, not “class” types. More
details can be found in the F# Specification.

In practice, for the definition of reference types, F# provides some built-in functions that make it
nearly trivial to calculate the hash or do a generic comparison of any two types: hash and compare.
Their usage is shown here:

[<AbstractClass>]
type Person(fn, 1ln, a) =
inherit System.Object ()
override this.GetHashCode() =
hash (fn, 1n, a) // convert to tuple, then take hash
override this.Equals(other) =
compare this (other :?> Person) = 0

If you are diligently typing in the examples as you read this book, you will notice
that the compiler generates an error for both this and the following examples,
complaining that the type Person doesn’t support the System.IComparable
interface. Hold that thought, as you fix the problem in the very next section,
once interfaces are introduced.

Because compare requires the two objects being compared to be of the same type, and the object
.Equals method describes its parameter as an Object, the downcast is necessary. In practice, devel-
opers will want to test this downcast before making the blind assumption (unless they are OK with
the default behavior of throwing an exception should the cast fail).

Interfaces [xX177

These two functions can make the definition of custom relational operators (<, >, and so on) almost
trivial:

[<AbstractClass>]
type Person(fn, 1ln, a) =
inherit System.Object ()
override this.GetHashCode() =
hash (fn, 1n, a)
override this.Equals(other) =
compare this (other :?> Person) = 0
member p.FirstName = fn
member p.LastName = 1n
member p.Age = a

static member op_Equality (1, r) = (compare 1 r) = 0
static member op_LessThan (1, r) = (compare 1 r) < 0
static member op_GreaterThan (1, r) = (compare 1 r) > 0

However, the definition of those operators (op_Equality, op_LessThan, and op_GreaterThan)
are only necessary if this type is to be consumed from languages other than F#; so long as the type
implements the TComparable interface, F# knows how to use it via standard operator definitions
defined for =, <, >, and their brethren.

INTERFACES

As developers familiar with C# and Visual Basic will already know, interfaces define a set of behav-
ior (methods, properties, and so on) that any implementing class must provide or else be considered
abstract and therefore uninstantiatable. Within the .NET environment, interfaces are used to allow
a type to belong to a group of related types without having to use up the (single) implementation
inheritance slot because a type may inherit from any number of interfaces.

F# permits both interface implementation, meaning an F# type can incorporate an interface as
part of its definition, and interface definition, meaning F# can define new interface types. The
syntax for doing so is remarkably consistent with the definition of types, to the point where the
F# developer can often ignore the details between classes and interfaces when defining them.
Again, this is in keeping with F#’s desire to let developers focus on the problem rather than the
physical details of how code should be laid out. However, it can seem entirely too subtle to devel-
opers used to having full control over those details; fortunately, for those developers who want
to have full control, F# again provides some constructs to make the design and implementation
of interfaces more explicit.

Implementation

Implementing an interface on an F# type is not much different from inheriting from a base class,
though the syntax is slightly different. The results of implementing an interface, however, are strik-
ingly different.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

178 [XCHAPTER9 INHERITANCE

Assuming the interface already exists somewhere (predefined in the CLR Framework Class Library,
or in an assembly against which the F# compiler is compiling), implementing an interface in F#

looks like:

[<AbstractClass>]
type Person(fn, 1ln, a) =
inherit System.Object ()
override this.GetHashCode() =
hash (fn, 1n, a) // convert to tuple, then take hash
override this.Equals(other) =
compare this (other :?> Person) = 0
interface System.IComparable with
member this.CompareTo (other) =
let other = other :?> Person
let tln : string = this.LastName
let 1n = tln.CompareTo (other.LastName)
if 1n <> 0 then
let tfn : string = this.FirstName
let fn = tfn.CompareTo (other.FirstName)
if fn <> 0 then
let ta : int = this.Age
ta.CompareTo (other.Age)
else
fn
else
1n

member p.FirstName = fn
member p.LastName = 1n
member p.Age = a

Syntactically, to implement an interface, the type uses the keyword interface, the interface type to
implement, and the keyword with, and then gives definitions for each of the members in that inter-
face. If there are multiple interfaces that the type wants to implement, they simply appear in their
own interface block, in any order the developer wants:

[<AbstractClass>]
type Person(fn, 1ln, a) =
inherit System.Object ()
interface System.IComparable with
member this.CompareTo (other) =
let other = other :?> Person
let tln : string = this.LastName
let 1n = tln.CompareTo (other.LastName)
if 1n <> 0 then
let tfn : string= this.FirstName
let fn = tfn.CompareTo (other.FirstName)
if fn <> 0 then
let ta : int = this.Age
ta.CompareTo (other.Age)
else
fn
else

Interfaces [X179

In
interface System.IFormattable with
member this.ToString(s : string,
fp : System.IFormatProvider) : string=
"Not interesting enough to implement yet"

member p.FirstName = fn
member p.LastName = 1n
member p.Age = a

y Note that this code (without the definition of Equals () or GetHashCode (), unlike
the prior example) generates a warning from the F# compiler — it recognizes the
IComparable interface and notices that the type doesn’t provide an override of
Object.Equals (), which usually goes hand-in-hand with IComparable. As a
result, it automatically generates an override implementation of Object .Equals ()
defined in terms of IComparable but suggests that the developer provide one
explicitly.

F# requires that all interface members must be defined when implementing an interface — it is not pos-
sible, in the current language definition, to leave a member undefined and force a class derived from
this one to provide that definition. However, in the odd case where that behavior is the exact behavior
wanted (such as the case where the developer wants to ensure that classes that derive from pPerson are
cloneable via the I1Cloneable interface, but doesn’t want to define a default behavior for it), not all

is lost:

[<AbstractClass>]
type Person(fn, 1ln, a) =
inherit System.Object ()
interface System.ICloneable with
member this.Clone() : obj =
this.DoTheCloneThing ()
abstract DoTheCloneThing : unit -> obj

Now the base type Person IS-a ICloneable, whose Clone () method calls over to the abstract
method DoTheCloneThing, thus must be implemented in derived types.

Calling Interface Methods

F# differs significantly from C# or Visual Basic in that the methods defined when implementing an
interface are known as explicit interface method definitions. This means that the usual C# or Visual
Basic trick of calling the interface method on the object type is no longer valid, which can throw
many experienced .NET developers for a loop when first discovering this.

For example, consider this F# example:

let p = new Student ("Rachel", "Reese", 28,
"Silverlight", "Agilitrain")
let pclone = p.Clone() // will NOT compile

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

180 [XCHAPTER9 INHERITANCE

Despite the fact that student inherits from Person, which in turn implements the TCloneable
interface, the second line in this example will not compile — F# doesn’t recognize the Clone
method on the student type. To invoke the clone method, F# requires the call to be through an
ICloneable reference:

let pclone = (p :> System.ICloneable).Clone()

Although this may seem awkward to the C# and Visual Basic developer used to the automatic
implicit conversion, in practice F#’s type inference can often make this explicit upcast unnecessary,
particularly where flexible type constraints are used.

Definition

Defining an interface is actually quite trivial in F#, in that the syntax for defining an interface
is strikingly similar to that of defining a class type — the annotation changes from class to
Interface, and all members must be abstract, but other than that, everything stays the same:

[<Interface>]

type IDrinker =
abstract Drink : unit -> unit
abstract FavoriteDrink : string

As with classes, interfaces can define methods or properties that must then be implemented on the
implementing type. If the type fails to implement all the members of the interface, the implementing
type must be marked abstract, just as with classes that fail to implement all base type members.

Implementing an F#-defined interface is no different than implementing an interface defined in
the FCL:

[<Class>]
type Student (fn, 1n, a, sub, sch) =
inherit Person(fn, 1ln, a)
let gpa = 0.0
do System.Console.WriteLine ("Whoo-hoo! College!")
new() = Student("", "", 0, "", "")
new(fn, 1ln, a) = Student(fn, 1n, a, "", "")
interface IDrinker with
member this.Drink() =
System.Console.WriteLine ("Chug! Chug! Chug!")
member this.FavoriteDrink = "Keystone Light"
member s.FormalName = s.FirstName + " " + " of " + sch
member s.Subject = sub
member s.School = sch

In some cases, an interface may want to extend another interface, providing some additional mem-
bers for implementing types to define:

[<Interface>]

type IEater =

abstract Eat : unit -> unit
abstract FavoriteFood : string

[<Interface>]

Summary [X181

type IGlutton =
inherit IDrinker
inherit IEater
abstract EatAndDrink : unit -> unit

Any type that implements the TGlutton interface must now provide definitions for the members of
IDrinker, IEater, and the new method introduced in T1Glutton.

OBJECT EXPRESSIONS

At times, an F# developer wants to create an implementation of an interface or derived type, but
the implementation of this type is used so rarely its definition doesn’t seem worth creating a named
type for it. In those scenarios, F# permits the creation of an object expression, essentially an anony-
mously named type that implements a given interface or inherits from a base class and provides, at
the point of its creation, the necessary implementation:

let p = { new IDrinker with
member this.Drink() =
System.Console.WriteLine("Sip")
member this.FavoriteDrink =
"Macallan 25" }
p.Drink()

The reference returned from an object expression is the type specified after the new keyword. Object
expressions can also work with any type, abstract or otherwise:

let p2 = { new Person("Ted", "Neward", 38) with

member this.DoTheCloneThing() = null
member this.Work() =
System.Console.WriteLine ("Writing a book!") }

p2.Work ()

As demonstrated, any constructor parameters to the object expression follow the typename, as with
any other construction statement. The curly-braces around the expression are also required; they
cannot be omitted.

SUMMARY

As has already been noted, F# supports the full range of object-oriented features, meaning that
F# can do everything that any other object-oriented language can do, including implementation
inheritance and the ability to define and consume interfaces. F# is a “fully-loaded” object-oriented
language.

But at times the desire isn’t to add variability through inheritance. Instead, the necessary design
stroke is to create classes that can vary a particular type or set of types used throughout the class
definition. This is known as parametric polymorphism, and more colloquially as generics, and is the
subject of the next chapter.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

10

Generics

WHAT'’S IN THIS CHAPTER?

Understanding generics in F#
Using generic types

Applying type constraints

@ © o ©

Working with statically resolved types

For the experienced C# or Visual Basic developer, this chapter will likely be simultaneously simi-
lar and yet maddeningly different from what’s familiar in those languages. Generics have always
played a key part in functional languages, thanks in large part due to the type inferenced nature
of those languages, and as a result generics will be used far more often when writing F# code.
This represents both a blessing and a curse: A blessing, in that code will often “silently” be more
reusable and extensible than the C# or Visual Basic developer originally intended, but also a
curse, in that some of the deeper and darker corners of generics and type systems, safely ignorable
when writing object-oriented code, must now be confronted and programmers’ demons slain.

BASICS

Normally, when developers write code, they use placeholders that will eventually contain
values and manipulate those values in particular ways; we call those placeholders “variables”
and, if those variables are part of a class instance, “fields.” Generics, also known as parametric
types, provide the ability for developers to write code using placeholders for the types of those
variables or fields. Generics allow the compiler to continue to exercise full static type-checking,
yet write classes that can be used with a variety of different types, all statically checked at
compile-time.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

184

[XEHAPTER 10 GENERICS

In languages like C# and Visual Basic, writing genericized code for anything but the simplest of
cases becomes frustrating and difficult, because those languages require explicit type descriptors
that must be used anywhere a type is used. For example, a generic “queue” class, a first-in-first-out
(FIFO) data structure that maintains an order of items pushed into it, would look something like
this in C#:

public class Queue<T>

{
public void Clear();
public bool Contains(T t);
public int Count { get; }
public T Dequeue();
public void Enqueue (T o) ;
public T Peek();

Its cousin written in Visual Basic would look not much simpler, but with different punctuation
marks:

Class Queue(0Of T)
Public Overridable Sub Clear()
Public Overridable Function Contains(t As T) As Boolean
Public Overridable ReadOnly Property Count As Integer
Public Overridable Function Dequeue() As T
Public Overridable Sub Enqueue(t As T)
Public Overridable Function Peek() As T

End Class

Later, the developer may want to take that gueue and put a bunch of Person objects into it, which,
because the Queue is instantiated with a Person type at its construction, means the compiler can
ensure that only Person objects are put into the Queue. Any attempt to put a non-Person object into
that gueue will fail at compile-time and thus prevent a bug from occurring.

Queue<Person> line = new Queue<Person> () ;
Line.Enqueue (new String("wWill this fail?"));

For most C# and VB developers, the story around generics more or less ends here: Parameterized
types provide type-safe collections, and beyond that, they get awkward and hard to use and thus
rarely show up. For example, any attempt to put a Student (which derives from pPerson) into a
person-only Queue would work, but attempts to pass a Queue of Students where a Queue of
persons was expected would not, driving O-O developers mad.

Parameterized types have had a long, rich history in functional programming languages, and,
thanks to type inference, often far exceed the O-O community in their usage. Because the compiler
can infer generic types in some cases, sometimes the only thing to say about parameterized types is
that they’re there, and the developer need not worry about it beyond that.

But in many cases, F# code will want or need to make the parameterization more explicit, and the
F# language provides some simple rules to do so.

Basics [x185

Type Parameters

Creating a generic type is remarkably easy, and syntactically similar to what the C# developer
already uses. To create the classic “stack” (LIFO) using generics, the type parameter is placed inside
angle brackets after the type name declaration, and that parameter name can be used as a type sub-
stitute throughout the remainder:

type Stack<'T>() =
\) let mutable data = []
Available § member this.Push(elem : 'T) =
vailable for
download on data f— elem :: data
Wrox.com member this.Pop() =

let temp = data.Head
data <- data.Tail
temp

member this.Length() =
data.Length

Code snippet MeasurementLog.xaml

Note that this is hardly the most efficient implementation, but it serves for a
demonstration.

Notice that the type parameter is prefixed with a single-quote; this is a non-negotiable part of the
type parameter. Historically (dating back to its OCaml days), just as C# prefers type parameters
named "T" and "U", and so on, F# prefers type parameters named 'a and 'b, so idiomatically, the
preceding code should be rewritten as:

type Stack<'a>() =

let mutable data = []

member this.Push(elem : 'a) =
data <- elem :: data

member this.Pop() =
let temp = data.Head
data <- data.Tail
temp

member this.Length() =
data.Length

More than one parameter can appear in the type declaration, as long as they are separated by a

comma:
type TwoArgGeneric<'a, 'b>(a : 'a, b : 'b) =
let VA = a
let VB = b
override tag.ToString() =
System.String.Format ("TwoArgGeneric ({0}, {1})", a, b)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

186 [XCHAPTER10 GENERICS

Creating an instance of the generic type is straightforward, using similar syntax as creating a nonge-
neric object instance, but passing a type argument in brackets:

let sl = new Stack<System.String>()

In (almost) any expression where a type is expected, a type parameter can be used. Thus, for exam-
ple, the type parameter can be used in a typeof expression to obtain the Type object for the type it
represents:

type Reflector<'a>() =
member r.GetMembers () =
let ty = typeof<'a>
ty.GetMembers ()

Of course, genericizing the entire type here is a bit unnecessary, because the type itself is only used
inside the GetMembers () method. In this case, the type parameter can be localized to the method
itself, making it a method type parameter.

Member Type Parameters

Member type parameters are localized uses of generics, limiting the scope of the type parameter’s
use to the method on which it is declared:

type Reflector2() =
static member GetMembers<'a>() =
typeof<'a>.GetMembers ()

Typical use of generic methods often require no special syntax, because type inference can often
pick up the correct type to use from its context, but in those cases when an explicit type needs to be
given (such as in the preceding code), put the bracketed type parameter between the method name
and the argument list (if any):

let stringMembers = Reflector2.GetMembers<System.String> ()

Of course, a type can have (different) type parameters at both the type scope and method scope, if
wanted.

TYPE CONSTRAINTS

One thing the compiler has to be careful about is making promises it can’t keep. For example, in the
following code (which will not compile), the compiler can’t be sure that this will work:

type InterestingType<'a>(data : 'a) =
member it.DoIt() =
data.DoSomething ()

Specifically, because DoSomething () isn’t a method that is guaranteed to appear on whatever type
happens to be passed in for 'a when the InterestingType instance is created, the compiler can’t be

Type Constraints [x187

certain that the call will work. As a result, it fails to compile this code, complaining that “Lookup
on Object of Indeterminate Type Based on Information Prior to This Program Point.”

Several solutions present themselves. One is to eliminate the generic entirely and use traditional O-O
techniques to handle this, by creating an interface that declares the Dosomething method, and force
any types that are passed in to the InterestingType constructor to be instances of that interface:

[<Interface>]
type IDoSomething =
abstract DoSomething : unit -> unit

type 0OOInterestingType (data : IDoSomething) =
member it.DoIt() =
data.DoSomething ()

Doing this has some drawbacks, however, stemming from the fact that the type isn’t known at com-
pile-time — only a part of the type is known (it inherits from the TDoSomething interface). Although
this is sufficient in this simple demo, it won’t always do.

The second approach is to use a type constraint, which is a declaration, enforceable by the compiler,
that must be met when used:

[<Interface>]
type IDoSomething =
abstract DoSomething : unit -> unit

type InterestingType<'a when 'a :> IDoSomething>(data : 'a) =
member it.DoIt() =
data.DoSomething ()

The when clause in the type parameter declaration tells the compiler that whatever type is passed in
for this parameter must meet the requirement, which in this case, given the :> syntax, means that
the 'a type must inherit from the named type (IDoSomething).

The following sections explore the many other kinds of type constraints that are enforced by the F# compiler.

Type Constraint
A type constraint, shown in the previous text, requires that the type argument inherit from the type
specified, or if the type specified is an interface, that the type argument implement that interface.
Equality Constraint

The equality constraint insists that the type has the capability to be compared against other values
of its type for equality:

type MustBeEquallable<'a when 'a : equality>(data : 'a) =

member it.Equal (other : 'a) =
data = other

This is a commonly used constraint, along with the comparison constraint, next.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

188 [XCHAPTER10 GENERICS

Comparison Constraint

The comparison constraint insists that the type has support for doing comparison operations:

type MustBeComparable<'a when 'a : comparison>(data : 'a) =
member it.Greater (other : 'a) =
data > other
member it.Lesser (other : 'a) =

data < other

How the type implements its less-than or greater-than support is, of course, entirely up to the type
in question, so long as it satisfies the basic signature of the two operations.

Null Constraint

A null constraint simply lists nu11 in the constraint clause:

type MustBeNullable<'a when 'a : null>(data : 'a) =
class
end

When used, this tells the compiler that the type parameter must be “nullable,” meaning the constant
value null is an acceptable value for it. In .NET 4.0, this means every type (thanks to nullable types
introduced in .NET 2.0) is acceptable; the only exceptions are the F# list, tuple, function, class,
record, or union types.

Constructor Constraint

A constructor constraint, as its name implies, requires that a given constructor member be present
and accessible:

type MustBeConstructible<'a when 'a : (new : unit -> 'a)> =
member it.NewIt () =
new 'af()

This will be particularly useful in situations where a given component needs to be instantiated
within a particular context — rather than use Reflection to invoke a constructor, the constructor
can be directly called with confidence (and better performance), because the compiler has ensured it
is present.

Value Type and Reference Type Constraints

At times, it will be necessary to restrict acceptable types to either the set of value types or reference

types:
type MustBeStruct<'a when 'a : struct>() =
class
end
type MustBeClass<'a when 'a : not struct>() =
class

end

Statically Resolved Type Parameters [<X189

Note that the not is not a general “reverse” of the type constraint but is a formal part of the refer-
ence type constraint. That is, we cannot write “not null” to create a “not-nullable” type constraint.

Other Constraints

Other constraint types (enumeration type constraints, delegate constraints, and unmanaged con-
straints) are available, but are marked by the F# documentation as Not Intended for Common Use.
The explicit member constraint is also labeled as such, but its use has shown up enough in F# code
and samples that knowing how to read it is a good idea, even if it’s not recommended for casual use.

STATICALLY RESOLVED TYPE PARAMETERS

In certain cases, the F# compiler can eliminate the generic type parameter entirely and simply replace the
type parameter with the actual type at compile time. These kinds of type parameters are indicated with
the caret symbol (*) instead of the single-quote character when declaring the type parameter, and they
are most commonly used with the type constraints listed in the previous section. In particular, they are
used frequently within the F# library and for that reason should at least be readable by F# developers.

As the name implies, the major difference between statically resolved type parameters and “regular”
type parameters is that statically resolved type parameters are replaced at compile time (much as
C++ template parameters are), rather than used at runtime to instantiate the generic type, as “clas-
sic” .NET generics are. As a result, there are a few differences between “regular” generics and stati-
cally resolved type parameter generics.

For starters, statically resolved type parameters cannot be used on types — only methods and functions
(described in Part ITI, “Functional Programming”) can have statically resolved type parameters. So, for
example, it is possible to write a generic function that does some odd or highly specialized math:

A

let inline (+@) (x :
X +x *y

a) (y :

let result =1 +@ 2
System.Console.WriteLine("result = {0}", result)

In addition, as the preceding example demonstrates, statically resolved type parameters can be used
on inline functions, where “regular” generic parameters cannot. (Functions and inline functions are
described more in Chapter 13.)

Because statically resolved type parameters are compile-time resolved, they allow for an additional
generic constraint type.

Explicit Member Constraint

An explicit member constraint tells the compiler to ensure that a given member is present on the
type, such as a method or property:
type MustBeDoItable<'a when 'a : (member DolIt : unit -> unit)>() =

class
end

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

190 [XCHAPTER10 GENERICS

This would be a possible replacement for the inheritance-based constraint used earlier, assuming
the compile-time replacement was acceptable (instead of runtime replacement). In general, however,
if there are multiple members that need to be specified, it’s going to be easier to put those members
into an interface and use that as the constraint.

SUMMARY

F#’s support for parameterized types is rich and powerful, particularly when combined with con-
straints and statically resolved type parameters, and makes writing reusable code just that much
more powerful. But just writing reusable code is only part of the reusability story; the code must be
packaged into a form that promotes reusability and reduces name conflicts, which is the subject of
the next chapter.

11

Packaging

WHAT'’S IN THIS CHAPTER?

Understanding modules and namespaces

® Defining assemblies in F#

Although it would be nice to imagine that when classes are written they can stand alone,

the truth of the modern development environment makes it clear that a class stands among
thousands, if not hundreds of thousands, of other classes, and only so many combina-

tions of characters produce meaningful names. For classes to avoid verbose monikers like
OurCompanysGenericLinkedList, some kind of higher packaging and syntactic partitioning
system needs to be in place. In the .NET universe, this packaging system is called the assem-
bly, and the syntactic partitioning is the namespace. As a CLR language, F# supports both but
also adds a new mechanism from its functional heritage, the module, into the mix.

NAMESPACES

.NET supports a system of lexical scoping, allowing different types of the same name to be
neatly sectioned away from one another, known as namespaces. At its heart, a namespace is
just a prefix to the typename, one which can be (usually) avoided in practical use via some
kind of namespace-inclusion statement, such as using in C# or Tmports in Visual Basic.
Namespaces have almost no runtime component to them — the CLR references every type
internally by its fully qualified name. Namespaces, then, are purely a programmer convenience.

Referencing a Namespace

In F# code, to include the list of types in a namespace in the list of top-level accessible names,
use the open keyword followed by the namespace name:
open System

open System.Diagnostics
open System.Reflection

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

192 [XCHAPTER11 PACKAGING

You can use the open statement at a variety of scopes, though because the effects of the statement
are felt only after its point of use, some idiomatic F# use holds that all such open statements should
appear at the top of the F# source file or script.

As with most .NET languages, when a namespace has been referenced via the open statement, the
namespace prefix can be left off the typenames when used:

Console.WriteLine ("Much shorter, thank you")

Like many of the other .NET languages, F# auto-opens use a number of different namespaces on
behalf of the F# programmer, because the types in those namespaces are considered to be so com-
mon that requiring F# programmers to open them manually would be a nuisance. As a result, every
F# file has a “silent” list of opens at the top of the file, as if the developer had written:

open Microsoft.FSharp

open Microsoft.FSharp.Core

open Microsoft.FSharp.Core.LanguagePrimitives
open Microsoft.FSharp.Core.Operators

open Microsoft.FSharp.Text

open Microsoft.FSharp.Collections

open Microsoft.FSharp.Core.ExtraTopLevelOperators

Most obviously missing from this list are any of the common .NET Framework Class Library
namespaces, such as System.

Defining a Namespace

Because namespaces serve as a mechanism for partitioning similarly named classes away from one
another and preventing accidental name conflicts, it’s important for the F# developer to also define
namespaces in which to define their own types. Doing so in F# is surprisingly easy — namespace
followed by the namespace desired opens a new namespace, and that namespace remains open until
replaced by a new namespace declaration. (The lack of a namespace declaration does not imply that
the code is defined in the “empty” namespace, however — more on this in a moment.)

Thus, defining a type Person in the namespace Examples would look like:

) namespace Examples

Available for open System

download on
Wrox.com type Person(fn : string, 1ln : string, a : int) =

member this.FirstName = fn
member this.LastName = 1ln
member this.Age = a
override this.ToString() =
String.Format ("{0} {1} is {2} years old",
this.FirstName, this.LastName, this.Age)

namespace MoreExamples

type Student () =
override this.ToString() = "Student"

Code snippet Packaging.fs

Modules [x193

This defines two types, one formally named Examples.Person, and the other formally named
MoreExamples.Student. Nesting of namespaces is not allowed in F#; to create a “nested”
namespace, such as Examples.Cool, the full “nested” name must be given in the namespace
declaration.

Note that F# will not permit any code before the first namespace declaration in an F# file, so general
F# coding idiom will have the first line denote the namespace used, or else no namespace is used
throughout the file.

MODULES

Modules come to F# from its functional roots, through its inheritance of the OCaml programming
language. Traditionally, functional languages have needed a way to partition functions away from
other potentially similarly named functions but haven’t wanted to “lose” that name-container prefix
the way .NET developers have casually tossed aside namespaces. For example, add could mean one
of many different things, which List.add clarified.

Further complicating the F# story is that, as previously mentioned, namespaces in the CLR are essen-
tially an abstraction of the languages on top of the platform and not something the CLR recognizes

as a formal construct. Thus, the functional style of a namespace “owning” top-level functions could
prove to be problematic particularly when interoperating with other .NET languages. As a result, F#
chose to incorporate another mechanism, the module, which on the surface of things seems to clash
directly with namespaces. However, modules and namespaces have significantly different behavior and
serve different purposes.

Referencing a Module

To use a module, F# reuses the open keyword again to much the same effect — opening a module
makes the functions and types declared inside that module available without requiring the fully
qualified name. At this level, there is little difference between a namespace and a module, and most
F# programmers will not even know the difference when using them.

Defining a Module

Defining a module is relatively straightforward, just as the namespace is: The module keyword fol-
lowed by a legitimate identifier name begins a module definition, and that module declaration is in
scope until it is replaced by a new one:

! module Examples

module Examples =
Available for

download on
Wrox.com open System

type Person(fn : string, 1ln : string, a : int) =
member this.FirstName = fn
member this.LastName = 1ln
member this.Age = a
override this.ToString() =
String.Format ("{0} {1} is {2} years old",

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

194 [XCHAPTER11 PACKAGING

this.FirstName, this.LastName, this.Age)
module MoreExamples =

type Student () =
override this.ToString() = "Student"

Code snippet Packaging.fs

However, something subtle and slightly different is happening here: the first module declaration is
establishing an overall container for all subsequent declarations, so the formal name of the Person
type in the preceding example will be Examples.Examples.Person. This is reinforced because
every subsequent module declaration is a kind of type definition inside the “top-level” declaration,
as evidenced because the second declaration requires an = and its contents must be indented, just as
a type definition requires.

The F# compiler automatically assigns a default module/namespace name to every given F# source
file, defining it to be the same as the source file itself (minus the extension). However, this rule
applies only in single-file F# applications or scripts; multi-file applications or libraries must have a
first-line namespace or module declaration, so it’s good habit to provide one even when unnecessary.

Note that namespaces can (and frequently will) contain modules, like so:

! namespace Packaging

module Examples =
Available for

download on
Wrox.com open System

type Person(fn : string, 1ln : string, a : int) =
member this.FirstName = fn
member this.LastName = 1ln
member this.Age = a
override this.ToString() =
String.Format ("{0} {1} is {2} years old",
this.FirstName, this.LastName, this.Age)

module MoreExamples =

type Student () =
override this.ToString() = "Student"

Code snippet Packaging.fs

Much of the F# library is written in this style.

Summary [X195

Where modules and namespaces differ wildly is in their definition and, more strikingly, in their
contents: Whereas a namespace can only have types defined within it, a module can have types
and/or functions and/or values (see Chapter 13) defined within it:

module Packaging
open System

module FunctionalExample =
let doSomething() =
Console.WriteLine ("I did something!")
let avalue = 5

The object-oriented mindset might see the F# module as a file-sized class that automatically con-
tains all the top-level-declared elements within it, and that would not be far off the mark — at the
IL level, absent any other module or namespace declarations, the module is compiled as a class,
the module-level functions as static methods, and the module-level values as properties.

This, then, raises the ugly question of whether the F# developer should prefer modules or types with
static members, and no clear answer presents itself. In general, it seems that popular opinion falls on
the side of how the code will be used — if the code will be used from other F# programs, a module
is preferred (as is the case for much of the F# library), but if the code is intended for consumption by
other .NET languages, then classes-with-static-members is likely to be a better approach to take.

In particular, if the goal is to create the moral equivalent to the static class from C# 2.0, then
the F# module is the right thing to use.

SUMMARY

F#’s support for both namespaces and modules is a new wrinkle in the traditional “name game”
around types. In general, the F# developer can find the best mileage to be that of using namespaces
to declare the “high-level” names (such as the company name), and modules to group closely related
functions and values together in a construct that offers similar — but not exact — kinds of capabil-
ity as a class.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

12

Custom Attributes

WHAT'’S IN THIS CHAPTER?

® Understanding attribute syntax in F#
® Defining new custom attributes

® Applying custom attributes

Custom attributes form a core part of the .NET platform, and as a fully fledged, card-carrying
member of the Microsoft family of languages, F# uses and supports custom attributes just as
easily and as much as C# or Visual Basic do.

USING CUSTOM ATTRIBUTES

F#, like most .NET languages, uses a variety of BCL-defined attributes to help describe how
code should be compiled and consumed not only by other programs written in F#, but also by
other .NET programs written in other .NET languages.

Like custom attributes defined in other languages, a custom attribute can appear just about
anywhere F# defines a linguistic atom, so custom attributes can appear (among other places)
on fields, method, or types, in a manner highly reminiscent of the C# and Visual Basic custom
attribute syntax combined, using both square brackets and angle brackets:

open System

[<Serializable>]
type Person (FirstName : string, LastName : string, Age : int) =
override p.ToString() =
String.Format (" [Person: {0} {1} {2}",
FirstName, LastName, Age)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

198 [XCHAPTER12 CUSTOM ATTRIBUTES

As could probably be inferred, this defines a class, Person, that has the BCL-defined serializable
attribute annotated on it, indicating that this class can be serialized using the standard BCL serial-
ization classes and methods.

If the attribute defines or requires additional information (such as the optional message to be dis-
played when compiling against a deprecated method or class annotated with the obsolete attribute),
those parameters are passed either in order or as name-value pairs, depending on how the attribute is
defined. More details on the differences between in order parameters and name-value pair parameters
is given in the “Creating and Consuming” section.

However, because F# offers a few additional syntactical elements that neither C# nor Visual Basic
offer, such as module-level functions and bindings (see Part III, “Functional Programming,” for
more details on functions, and Chapter 11 for more details on modules), F# also permits custom
attributes to be defined at the function level:

[<EntryPoint>]

let Main args =
//

As is described in more detail in Chapter 18, this defines the custom attribute on a static element
(property or method) defined by that name-value binding and can later be discovered, often either
via Reflection or via some other form of metadata consumer (such as the unmanaged metadata
COM interfaces that many of the Visual Studio tools use). In this particular case, as described next,
the EntryPoint attribute tells the F# compiler where the entry point in this application is defined,
instead of simply assuming the last file to be compiled in this assembly as the entry point.

Following is a list of custom attributes defined by the .NET environment and/or the F# language,
and the effects that attribute has during compilation and/or execution.

EntryPoint

This attribute is defined by the F# language to help the programmer define the entry point (the first
line of code) to be executed in the program; it has no effect in F# Class Library projects.

Normally, without this attribute, F# compiles the last module (file) in the project to be the entry
point and the sequence of module-level definitions to be the lines of code to be executed; this is what
allows F# to write one-liner programs like:

Console.WriteLine("Hello, world!")

as full-fledged .NET applications. However, in certain cases, F# developers may want (or need) to
take a more C#-ish or Visual Basic-ish approach to the entry point of the application and define the
entry point as a member method of a class:

type App() =
[<EntryPoint>]
let Main(args) =
System.Console.WriteLine("Hello world!")
0

Although this will compile, at runtime an exception will be thrown, claiming that the method anno-
tated with EntryPoint must be static. When a static method annotated with EntrypPoint is defined,

Using Custom Attributes [<199

however, the F# compiler finally reveals (through a warning) the idiomatic manner in which F#
wants EntryPoint to be used: on a module-level function:
type App() =
member public a.Main(args) =

System.Console.WriteLine("Hello world!")
0

[<EntryPoint>]

let Main(args) =
let app = new App()
app.Main(args)

Alternatively, the method in app could be static, although the common .NET idiom holds that hav-
ing a singleton App object instance can be a useful place to hold singleton data and settings.

Note that the F# compiler will enforce that the method marked with EntryPoint takes an argument
(a string array representing the command-line arguments passed to the application) and implicitly
returns int (the “exit code” of the application).

Of course, as with all .NET applications, the command-line arguments can always be retrieved via
the System.Environment method GetCommandLineArgs(),andtheeXﬁCOdecanbesetbeﬁHeteP
mination via the System.Environment . ExitCode property, or the System.Environment .Exit ()
method call, so an explicit EntryPoint is not necessary.

Obsolete

The system.Obsolete attribute, when defined on a type, method, namespace, module, or other F#
element, can generate a warning when code (whether F# or otherwise) uses that element:

open System

type ObsoleteExperiment () =
[<Obsolete>]
member e.TestMethod() =
System.Console.WriteLine("Don't use this!")

let e = new ObsoleteExperiment ()
e.TestMethod ()

When compiled, the call to TestMethod () generates a warning from the F# compiler: "This con-
struct is deprecated". Because this is a BCL-level attribute, more importantly, other compilers (such
as the C# or Visual Basic compilers) also honor the attribute and emit similar or identical warnings.

If the author of the deprecated functionality wants, a message can also be communicated to the cli-
ent indicating why this particular construct should not be used:

type ObsoleteExperiment () =
[<Obsolete("This method really just sucks")>]
member e.AnotherMethod() =
null.ToString()s

This message then appear in the compiler warning, right after the standard "This construct is depre-
cated" text.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

200 [XCHAPTER12 CUSTOM ATTRIBUTES

As might be expected, this attribute should be used only during code refactoring to indicate to
clients that this construct may eventually be dropped (and will break client code when it does).
Practically speaking, obsolete has one other interesting side effect: Obsolete-annotated methods
do not appear in the Visual Studio IntelliSense drop-down list as an attempt to minimize its use in
new or refactored client code.

Conditional

The System.Diagnostics.Conditional attribute marks code as conditionally compiled, depend-
ing on whether a compiler-defined string (typically "DEBUG", the compiler-defined string indicating a
Debug build) is specified as being “on” during compilation. If said string is not present during com-
pile, then the call to the conditional-annotated method simply does not happen.

For example, consider this class:

open System
open System.Diagnostics

type ConditionalDemo (data : string, count : int) =
[<Conditional ("DEBUG")>]
member c.DumpInternals() =
Console.WriteLine("data: {0}, count: {1}",
data, count)
override c.ToString() =
String.Format ("ConditionalDemo () ")

The DumpInternals method will actually be executed only during debug builds, because the
method call compilation will happen only on the condition that the "DEBUG" string is passed as a
compiler flag:

let cd = new ConditionalDemo ("password", 5)

Console.WriteLine (cd.ToString())
cd.DumpInternals ()

Thus, the final preceding line (the call to DumpInternals) will appear only in Debug builds.

This attribute is intended to save .NET developers from having to bracket debug or diagnostic code
with #if/#endif tokens to keep it out of Release builds.

ParamArray

The System. ParamArray attribute, when defined on the last argument in a list of method (or func-
tion) arguments, tells the .NET environment to treat this as a variable-arguments method:

open System

type ParamArrayExperiment () =
member e.TestMethod([<ParamArray>] args : obj array) =
for o in args do
System.Console.WriteLine(o.ToString())

let e = new ParamArrayExperiment ()
e.TestMethod("one", 2, 3.0)

Using Custom Attributes [X201

e.TestMethod ("This is just one argument")
e.TestMethod () // No arguments, empty array

The Paramarray attribute must appear on the last parameter in the argument list, and any param-
eters prior to the ParamArray argument must still be present when called for the method call to
compile correctly.

F# also allows application of this attribute on the parameters passed to a function, as well:

let varargsFunction ([<ParamArray>] args : obj array) =
for o in args do
System.Console.WriteLine(o.ToString())

However, just because we can put the attribute on the function doesn’t mean F# allows functions to
be called using a variable-argument style:

varargsFunction("one", 2, 3.0)
// error: This expression was expected to have type obj array
// but here has type 'a * 'b * 'c

The problem here is that syntactically, F# wants to see the comma-separated list as a tuple type
instance that forms a single argument passed to the function, rather than collecting them into an
array for passing. As a result, idiomatically, Paramarray will be used only on methods of classes.

Note that other .NET languages that call into the function may treat it as a
variable-arguments array, depending on the details of the language; see
Chapter 18 for more details.

Struct, Class, AbstractClass, Interface, Literal, and Measure

These attributes are F#-specific and are used to describe how the F# type should be mapped to the
underlying CLR (in the case of struct, Class, AbstractClass or Interface), how the F# type
should be compiled (in the case of Literal), or how the F# type should be viewed with respect to
other F# types (in the case of Measure).

struct is described in Chapter 7, Class and AbstractClass in Chapter 8, and Interface in
Chapter 9. Literal and Measure are described in Chapter 3.

Assembly Attributes

The various Assembly attributes are used to configure the assembly-level manifest metadata that F#
will emit into the compiled assembly during compilation. These are the same attributes that the Visual
Studio compiler generates for Visual C# and Visual Basic projects from the Properties page, but given
F#’s recent newcomer status to the Visual Studio family, F# developers looking to set these values
should assume they have to do so “by hand,” by specifying these attributes with the assembly prefix
in one .fs file in the project. For example, to mark an assembly as version 1.0.0.0, owned by Neward
and Associates, an .fs file should include:

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

202 [XCHAPTER12 CUSTOM ATTRIBUTES

open System.Reflection

[<assembly:AssemblyVersion("1.0.0.0")>]
[<assembly:AssemblyCopyright (" (c) 2010 Neward & Associates")>]
do

()

Note that to “attach” the attribute to something not at a type or function level, the F# compiler
requires all assembly-level attributes to be attached to a do block declared at the top-level of the file.
In general, it’s most often going to be easiest to put these attributes into the same file that contains
the program’s entry point, if one is specified.

These attributes (AssemblyFileVersion, AssemblyDescription, AssemblyTitle,
AssemblyCopyright, AssemblyTrademark, AssemblyCompany, AssemblyKeyFile, and so on) are
described in more detail in the MSDN documentation in the System.Reflection namespace — aside
from the F# syntax, they are exactly identical to examples described in C# or Visual Basic.

DefaultMember

This attribute, when used on a type, indicates the default member for that type, which is often used
in other .NET languages as a shorthand way of accessing an indexer property.

Serializable, NonSerialized

The serializable attribute is used to mark a type as being eligible for serialization, a process by
which an object instance can be reduced to a stream of bytes, then brought back into existence from
that same stream of bytes, and contains the same field data as it contained at the time of serializa-
tion. The NotSerializable attribute is used to mark a field as being exempt from this serialization
process in a Serializable-marked type.

For more details on serializable and NotSerialized, see the MSDN documentation and the
namespace System.Runtime.Serialization.

AutoOpen

This is an F#-only attribute applicable at the assembly level. When used, it takes a string as a param-
eter, indicating a namespace or module name. When this assembly is referenced, the namespace or
module specified in this attribute is automatically opened, as if the F# programmer had typed open
<namespace> in the script or source file referencing the assembly.

It has no meaning outside of F#.

Other Attributes

The .NET BCL is chock-full of other attributes used in a variety of tech-specific settings, such as
the custom attributes used in Windows Communication Foundation (WCF) code to indicate com-
munication bindings for services and clients. Use of these attributes follows the same patterns as the
previous attributes, and deeper coverage of those attributes accompanies the appropriate text in
Part IV, “Applications.”

Creation and Consumption [X203

Of course, at any point, F# developers are free to create their own custom attributes, as described
in the next section. For the most part, however, unless F# developers build a library or tool such as
something similar to the Entity Framework, WCF, or some other infrastructure-oriented idea, most
custom attributes will simply be used, rather than created.

CREATION AND CONSUMPTION

As a CLI Producer (meaning the language can produce types suitable for consumption by other CLR
languages), F# is just as capable of producing custom attributes as C# or Visual Basic is.

Creation

Any C# or Visual Basic developer versed in creating a custom attribute in either of those languages
will find the process of creating a custom attribute in F# to be strikingly similar. This is not an acci-
dent, thanks to the hybrid nature of F# as both a functional and object-oriented language.

Fundamentally, creating a custom attribute type in F# consists of defining a new type that

inherits from the System.attribute base class and adorning the new type with an attribute
(AttributeUsage) that describes where the new type can be used as an attribute, and ensuring that
the new type can be found by other .NET (F# or otherwise) assemblies. Then, to use F# or other
languages, simply reference the assembly containing the custom attribute and use the attribute
where wanted. (This presumes that somebody — compiler, library, or runtime environment — will
use Reflection in some way to discover the attribute, which we cover in the next section.)

For example, imagine a requirement: If an exception is thrown, a customer demands that the pro-
grammer or group responsible for the exception-generating code be identified (probably so that they
can fire them or at least threaten to take away their video-game privileges). Because the Exception
base class defines a member that provides Reflective access to the member that generated the excep-
tion (TargetSite), when the exception is caught, we can interrogate the source of the exception to
see if it has our custom attribute, and if it does, display the miscreant who wrote the code and his
pitiful justification.

First, the custom attribute needs be defined. A custom attribute is, at heart, just a class that inherits
from the System.Attribute base class:

type BlameAttribute() =
inherit System.Attribute()

At this point, it is a fully fledged member of the attribute family and can be used in code:

[<Blame>]
let faultyMethod() =
null.ToString()

Sharp-eyed readers will note that the class is defined as BlameAttribute, but used as Blame; this
is a .NET convention dating back to the earliest days of .NET, and one that is honored across all
.NET languages to date. It is entirely syntactically possible to define a custom attribute without the
“Attribute” suffix, but doing so is likely to be frowned upon in code reviews and earn the odious
“Donut Purchaser” responsibilities at the next team meeting.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

204 [XCHAPTER12 CUSTOM ATTRIBUTES

This custom attribute, however, needs to carry some additional data with it, as per the require-
ment previously described, namely, the programmer who last touched this faulty code and an
optional reason for why this code is so bad. From a usage standpoint, this means we want to use it

like this:

[<Blame ("Aaron Erickson")>]
let faultyMethod() =
null.ToString()

or if he wants to provide an excuse, like so:

[<Blame ("Aaron Erickson", Reason="I told it's not done!")>]
let faultyMethod() =
null.ToString ()

Translated, this means the attribute needs to have one required and one optional parameter. For
attributes, this means that the class must have one constructor parameter (the required parameter)
and one read/write field or property (the optional parameter). As is described in Chapter 8, this
means the attribute must look like this:

open System

type BlameAttribute(owner : string) =
inherit Attribute()

let mutable reason = ""

member public b.Owner
with get() = owner
member public b.Reason
with get() = reason
and set (value) = reason <- value

override b.ToString() =
String.Format ("Blame {0}{1}"

b.Owner,
if b.Reason = ""
then ", just because!"
else ", because " + b.Reason)

It might be helpful to restrict the kinds of places that the BlameAttribute can be used — for exam-
ple, it doesn’t make sense to define Blame on method parameters — which is done using another
attribute, the AttributeUsage attribute, on BlameAttribute itself:

[<AttributeUsage (AttributeTargets.Assembly |||
AttributeTargets.Class |||
AttributeTargets.Constructor ||
AttributeTargets.Enum |||
AttributeTargets.Field |||
AttributeTargets.Interface |||
AttributeTargets.Method |||
AttributeTargets.Module |||
AttributeTargets.Struct)>]

type BlameAttribute (owner : string) =

//

Creation and Consumption [X205

This gives the compiler the necessary support to ensure that Blame can only be placed on assemblies,
modules, classes, enums, interfaces, structs, constructors, fields, or methods.

At this point, the attribute is good for use; actually digging it out at runtime, however, requires a bit
more code, not within the attribute itself but within the code that wants to use the attribute.

Consumption

Consuming the custom attribute requires the use of .NET’s Reflection API, which provides access
to the full-fidelity metadata contained within a .NET assembly. A full discussion of the NET
Reflection API is beyond the scope of this particular problem, but fortunately, the Exception class
provides an easy escape: Because the Targetsite property of the Exception object provides the
Reflective element that generated the exception, it’s relatively trivial to use that to find the offending
party, if a Blame attribute is attached to it.

Of course, first the exception must be caught:

try

faultyMethod () |> ignore
with
| ex —>

Console.WriteLine("Bam!")

Each Reflection object (whether it represents a method, field, property, class, or some other
Reflective element) has a method defined on it, GetCustomAttributes (), that returns an array
of objects containing any custom attributes defined on that Reflective element. So, for example,
when the preceding faulty code is invoked, the Exception object’s Targetsite will point to

a System.Reflection.MethodInfo object that represents the faultyMethod method. When
GetCustomAttributes () is called on it, it will return any custom attributes defined on
faultyMethod, of which there is currently only one.

However, because a given Reflective element can have zero-to-many custom attributes on it,
GetCustomAttributes () has an easy way to filter out all the custom attributes except the one type
that holds interest, by passing in the system.Type of the attribute.

GetCustomAttributes () also takes a Boolean parameter, indicating whether the search for a cus-
tom attribute should take into account parent-defined versions of the element — for example, if the
method in question is an overridden member of a derived class, should it search on base-class-defined
versions of that method to see if custom attributes appear there, as well?

Thus, digging out the Blame attribute looks like this:

try

faultyMethod() |> ignore
with
| ex ->

let tgt = ex.TargetSite
let custAttrs =
tgt.GetCustomAttributes (typeof<BlameAttribute>, true)
if custAttrs.Length > 0 then
Console.WriteLine("Aha! {0}", custAttrs.[0])
else
Console.WriteLine ("Nobody to blame, sorry!")

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

206 [XCHAPTER12 CUSTOM ATTRIBUTES

Note that the returned array of custom attributes from GetCustomAttributes () is an obj array,
and if the particular properties from BlameAttribute need to be accessed, it will require a
downcast:

try
faultyMethod() |> ignore
with
| ex ->
let tgt = ex.TargetSite
let custAttrs =
tgt.GetCustomAttributes (typeof<BlameAttribute>, true)
if custAttrs.Length > 0 then
let blame = (custAttrs.[0]) :?> BlameAttribute
Console.WriteLine("Aha! {0} did it!", blame.Owner)
else
Console.WriteLine ("Nobody to blame, sorry!")

Bad programmer. No pizza.

Of course, this same technique could be used to provide runtime-accessible documentation for types
and members, similar to what dynamic languages such as Ruby or Python provide so that F# devel-
opers using the F# REPL can discover both the types and their accompanying documentation during
REPL development. And custom attributes can also be applied to any of a dozen other scenarios,
limited only by the .NET developer’s imagination.

SUMMARY

As any good .NET citizen does, F# provides full-fidelity access to the metadata required by the
CLR, and at least part of this access is through the definition, application, and consumption of
custom attributes. The syntax is remarkably similar — yet in many ways terser — than that used by
C# or Visual Basic, and as such shouldn’t be any kind of hurdle for the experienced .NET developer
coming to Fi#.

PART Il
Functional Programming

» CHAPTER 13: Functions

» CHAPTER 14: Immutable Data
» CHAPTER 15: Data Types

» CHAPTER 16: List Processing

» CHAPTER 17: Pipelining and Composition

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

15

Functions

WHAT'’S IN THIS CHAPTER?

Reasoning about Functions
Understanding Type Restriction

(0}
[0}
® Using First Class Functions
[0}

Partially Applying Functions

The way you think about functions is one of the things that most strongly differentiates F#
from the other .NET languages. This doesn’t come down to how functions are represented
under the hood. Instead, it has more to do with the way functions are used conceptually.

When programming in F#’s functional style, functions are thought of as just another data type
much like any object. They are frequently both passed into and returned from other functions.
They also often have data stored inside of them through partial application or closures.

Although this can be done in other languages, it’s not a frequently used feature and can
take some getting used to. However, in time you will see that by leveraging these functional
features more often, you can bring much to the table in terms of code succinctness and clar-
ity. Indeed, much of F#’s power comes from this style of avoiding objects and focusing on
functions.

TRADITIONAL FUNCTION CALLS

Traditionally, in mainstream imperative languages like C, C++, and C#, we treat functions as
something completely different than the data that flows through our programs. They take a set
of data, do some work on or with that data, and, most likely, change the state of our program in
some way. They are like the channels through which the execution of our program flows, chang-
ing various data states along the way.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

210 [XCHAPTER13 FUNCTIONS

Unfortunately, this approach makes it difficult to build reusable components. Without the ability to
pass functions, it is difficult to compose new structures at runtime, swap out components for testing
or have a subcomponent communicate back to its parent. Over the years various techniques have
emerged to mitigate this.

One of the first was to use function pointers (aka delegates). Function pointers allow us to pass the
location of functions in memory so that they can be called later. However, these are cambersome
to define and often lack type safety. Also, because languages that use this technique often have only
compile-time type checking, ad-hoc runtime type systems often need to be constructed.

Another common technique is to use abstract inheritance. The general concept of this technique is
that you define an abstract class that requires certain member functions are filled in. You then pass
your function in terms of a concrete implementation of this abstract class. However, this approach
requires quite a lot of additional code and, as the inheriting class may have hidden private variables,
dependencies on unspecified behavior emerge.

Yet another is Eventing. Events allow us to easily inject callbacks into our existing code via a special
mechanism for calling sets of function pointers. However, in addition to the runtime type problems
inherent in using function pointers, it has a whole slew of others issues due to the dependence on
subscribers. How can we be sure the correct subscribers are being called? How can we be sure our
subscribers are unsubscribing correctly? Also, ordering often cannot be guaranteed, especially when
many asynchronous calls are being made. The combination of these factors can make event-driven
programming a tangled mess of dependencies.

As you’ll find out in Chapter 14, many of the problems in using these constructs stem from compile-
time-only type systems or the use of shared state. However, even ignoring these, we find that much
additional code must be written even for a single additional composable call to be used. For this
reason, imperative programmers often avoid these language features as they can add a significant
amount of bulk to their program. Instead they opt to write rigid code and use cut and paste as their
primary form of code reuse.

MATHEMATICAL FUNCTIONS

In functional programming, functions are considered first-class language constructs. Like in math-
ematics, functions can be partially filled in and assigned to variables. Functions can be passed into or
returned from other functions. They can even be written inline inside of other functions sharing parents’
input variables.

This makes writing code in F# much more like math than other languages. Frequently you compose
functions out of other functions at runtime. You then can push your data through the resulting
function to obtain your result.

Instead of designing in terms of the behavior of your object, which has been composed of other
objects, you design in terms of the behavior of your function that has been composed of other func-
tions. These ideas are fundamentally quite similar, but without having to constantly define objects,
you generate much less structural code. The other main difference is, unlike objects, functions have
immutable internal state. Given the same set of arguments, they always have the same behavior.
This makes them much easier to test and significantly more likely to do exactly what you intended.

Function Arguments and Return Values [X211

COMING FROM C#

If you are deeply familiar with C# lambda expressions, you are way ahead of the game. C# lambda
expressions are arguably first-class language citizens. They are capture in-scope variables. They even
grant some limited type inference. F# functions (and lambda expressions) support all these features
and more.

First, they have much better type inference. Only rarely will you find yourself needing to define
the input and output types of an F# function. This is because the F# compiler uses the powerful
Hindley-Milner type inference algorithm (http: //www.codecommit.com/blog/scala/what-is-
hindley-milner-and-why-is-it-cool). This alone greatly reduces code size.

This means there is no need to build intermediate objects to move data between functions. That is,
they can have arguments passed in one at a time and return sets of multiple data types. This means
there is no need to define intermediate classes used simply to move data between functions.

Third, F# functions support tail recursion optimization. This means that, if written so that the
recursive call always occurs as the final step before returning, F# functions will not overflow the
stack. This allows you to leverage recursion in many more cases and be confident that your recursive
functions will execute as expected.

Perhaps the biggest feature over C# lambda expressions is that F# functions do not need to be contained
within an explicit class. Using F#’s interactive window, you can compose your program one function at
a time, playing with different ideas. This makes development much faster because a stiff object-oriented
design doesn’t need to be in place in order to simply try a new idea. Object-oriented architecture can

be applied at a later time, once the underlying ideas of the program have solidified. One of the biggest
benefits in this style of writing software is that tests end up being function level and so don’t need to
constantly be rewritten for architecture changes.

FUNCTION ARGUMENTS AND RETURN VALUES

Function arguments and return values are a bit different in F# than in other .NET languages. They
have a different syntax and use type inference by default. Both of these features come directly from
F#’s ML heritage.

However, as F# compiles to IL just like C# or VB, it also is ultimately limited to the same underlying
type representations. More than in any other .NET platform language, it is important to understand
this type system and the limits of its capability to both generalize and restrict. Similarly, learning

to transcend these limitations by leveraging F#’s inline keyword to enhance type generalization and
restriction can be a great boon.

Automatic Generalization and Restriction

In F# the type of each function argument is automatically resolved for you through context when-
ever possible. The compiler examines how the arguments are used and attempts to provide a type
that satisfies the most general case allowed by the underlying CLR type system. This process is
called automatic generalization.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

212 [XCHAPTER13 FUNCTIONS

Consider this function which simply returns the minimum of two arguments:

> let min argl arg2 = if argl < arg2 then argl else arg2;;
val min : 'a -> 'a -> 'a when 'a : comparison

Here the type inference engine saw that argl and arg2 were compared with the less-than operator
inside of the min function and so inferred that the arguments to min must have the same restrictions
as the arguments to less-than. That is, they both must be the same type and have the comparison
constraint. The less-than operator could just as well be another function. In that case the argument
types would be inferred based on the signature of that other function.

There are a few important caveats to this. The first is that numerical operators are resolved to int if
not observed being used in another context. For example, if you define a simple add function with-
out any context you might expect it to generalize to all of the potential inputs of the plus operator.
This is not the case; instead it will take and return integers by default.

> let add a b = a + b;;
val add : int -> int -> int

If you give the compiler an external context for this function, it will resolve the arguments in terms
of that context.

> let add a b=a+b
add 2.0 3.0;;

val add : float -> float -> float

However, as the function signature has now been solidified to take two floats and returns another,
if you now attempt to use this function with the int type, it will fail.

> add 2 3;;

add 2 3;;

S

C:\Users\Rick\AppData\Local\Temp\stdin(6,5): error FS0001l: This expression
was expected to have type
float
but here has type
int
Of course, this is less than ideal. Why should you need to write a specific version of our add func-
tion for each basic data type? Thankfully, you don’t. There is a solution to this problem: the inline
keyword and statically resolved type parameters.

The inline Keyword

Much like in other languages supporting this keyword, when a function is defined with in1ine the result-
ing function is injected directly into the locations from which it is called at compile-time. In older languages
this was done for the sake of execution speed. In a tight loop, function calls can have significant overhead.

However, with modern processors this has become much less of an issue. These days our proces-
sors are often sitting idle, starved for information. The cost of a function call is usually a small drop

Function Arguments and Return Values [X213

in the overall bucket. Also, modern compilers are much better at optimization and will often do
automatic inlining when appropriate. For these reasons the C# and VB.NET languages opted to not
include this feature.

In F#, inline is mainly used for its effect on type inference. An inlined function supports much
more robust type inference as it is not bound to the rules of the CLR as tightly. It can infer argu-
ments in terms of statically resolved type parameters.

So, whereas in the previous section we saw that our add function was being automatically restricted
to only accept a single type of input parameter, if we define the same function as inline it can now
accept either.

> let inline add a b = a + b;;

val inline add :
“a -> b -> “c

when ("a or “b) : (static member (+) a* "b -> "c)

> add 2.0 3.0;;
val it : float = 5.0

> add 2 3;;
val it : int =5

In this case the compiler is generalizing on the plus operator even though it is not generic. As long
as the passed arguments support a plus operator that takes the other type, it will resolve correctly.
The only caveat is that this type of inference can only happen at compile-time. Functions defined as
inline will not be usable from other .NET languages.

Type Annotations

It is sometimes necessary to explicitly describe your type parameters in F#. Most often type infer-
ence works incorrectly due to a bug elsewhere in your program. However, occasionally the compiler
cannot determine the type of your parameter for you or will infer a type you don’t expect. Whatever
the case may be, understanding type annotations is essential to writing F# effectively.

Basic type annotation syntax is simple; you just wrap the argument in parentheses, add a colon after
the argument name and express the type after it.

> let plusOne (x: int) = x + 1;;
val plusOne : int -> int

In this example we are annotating x but the return type is still inferred. To annotate the return type,
place a colon after the argument list and follow it with the to-be-returned type.

> let plusOne x : int = x + 1;;
val plusOne : int -> int

The return type, as well as each argument, may or may not be annotated individually.
> let plus x (y: double) = x + y;;

val plus : double -> double -> double

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

214 [XCHAPTER13 FUNCTIONS

It is often necessary to only annotate one argument to ensure type inference works correctly or to
find that pesky bug causing your program to fail compilation. It ends up working quite a lot like
dominos. When one type is correctly identified, many others fall into place as well. Once the types
around it are resolved, incorrect code will stand out like a sore thumb.

Generics and Type Constraints

F#’s type system isn’t limited to just basic types. It supports the full range of generics and type con-
straints as other .NET languages. In fact, its type system can infer most of these automatically.

For example if you were to write a function that compares two arguments with the equals operator,
the arguments automatically generalize to a generic type with the equality comparison constraint.

> let areEqual argl arg2 =
argl = arg2;;

val areEqual : 'a -> 'a -> bool when 'a : equality

However, it is also possible to explicitly mandate these constraints when making type annotations.
This can be done through application of the when keyword.

> let areEqual<'a when 'a : equality> (argl: 'a) (arg2: 'a) =
argl = arg2;;

val areEqual : 'a -> 'a -> bool when 'a : equality

In some cases you may want to have multiple constraints on a type. To do this, separate each con-
straint with the and keyword.

> let isNull<'a when 'a : equality and 'a : null> (arg: 'a) =
arg = null;;

val isNull : 'a -> bool when 'a : equality and 'a : null

A list of commonly used generic type constraints follows.

CONSTRAINT EXAMPLE

Type (or Parent) <'a when 'a :> Object>

Nullable <'a when 'a : null>

New() <'a when 'a : (new: unit -> 'a)>
Value Type <'a when 'a : struct>

Reference Type <'a when 'a : not struct>
Comparison <'a when 'a : comparison>

Equality <'a when 'a : equality>

Partial Application [X215

Statically Resolved Type Parameters

As mentioned in the previous section on the inline keyword, F# also supports a much richer set
of compile-time-only type constraints. To use them you must trade in generic type parameters for
something called statically resolved type parameters. Parameters defined in this way are only avail-

able to F# functions marked as inline.

One particularly useful example is the member restriction type constraint. This constraint allows

you to generalize a type on methods, properties, and even operators.

type PresentFromTheGods (isGood)
member x.IsGood : bool = isGood

let inline IsItGood< "“a when "“a : (member IsGood : bool)>
let isgood = ("a (member IsGood : bool) container)
isgood

(container:

A

a)

In this example the TsTtGood function may take any object that has a gettable TsGood property that
returns a bool. When passed an argument of a type defined by the member restriction statically
resolved type parameter, some special syntax must be used to extract the value of that member. Here
the value of the container’s IsGood member is extracted into the isgood variable and then returned.

> IsItGood (new PresentFromTheGods (true));;
val it : bool = true

At compile time inline code will be generated in place of the function call. This allows for shared

code that is fast and has liberal constraints.

However, as you can see from this example, statically resolved type parameters have syntax that is
quite esoteric. In most cases it’s best to stick with a combination of inline inference and CLR sup-
ported type constraints. This way, you can be sure that they will hold at runtime and that your

functions will be available when calling F# assemblies from other languages.

PARTIAL APPLICATION

In this example only one of add’s two arguments is passed in. After the value 1 is applied, the x
argument is fixed to 1. The result of this is a new function which adds one to any integer passed in.

Partial application is the passing in of only some arguments to a function. This allows the argu-

ments to be stored within the function and passed around implicitly with it.

The remaining

arguments can be then applied later when they are available or when you want the function to

be executed.

> letadd xy =x +Yy

let addOne = add 1;;

val add : int -> int -> int
val addOne : (int -> int)

> addOne 5;;

val it int = 6

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

216 [XCHAPTER13 FUNCTIONS

Partial application has many benefits. As you’ll see in Chapter 17, it allows functions to be com-
posed much more readily. Also, you no longer need to pass around a separate set of arguments along
with your function. You can bake the repeatedly used arguments right inside and just pass the par-
tially applied function around. This reduces the size of your code by making it unnecessary to build
container classes that contain only the repeatedly used inputs of a given function or class.

Currying

In F#, partial application is done through a process called currying. A curried function is a function
that internally has been broken down into a series of one parameter functions. When a parameter is
passed in, another function is returned whose argument is the next parameter. This occurs until all
parameters are filled in and the function is executed. This is done automatically for you in F#, but
let’s take a look at what it looks like conceptually.

> let explicitCurryAddTwoNumbers x =
function y -> x + y

val explicitCurryAddTwoNumbers : int -> int -> int

Here we have a function which takes a single argument, x, and returns another function of a dif-
ferent argument, y. This returned function has x captured inside of it, ready for use later. This
capturing of variables bound in a parent is called a closure.

> let plusOne = explicitCurryAddTwoNumbers 1;;
val plusOne : (int -> int)

> plusOne 2;;

val it : int = 3

After passing a value into the function, the internal function is returned with x bound. This func-
tion can then have another argument applied to it. This ends up being functionally equivalent to the
implicit currying in F#.

> let addTwoNumbers x y = X + Yy

let plusOne = addTwoNumbers 1;;

val addTwoNumbers : int -> int -> int
val plusOne : (int -> int)

> plusOne 2;;

val it : int = 3

As you can see by comparing the two examples above, explicit currying requires an additional nested
function for each parameter. For example, three arguments would require two nested functions.

> let explicitCurryAddThreeNumbers x =
function y -> function z -> (x + vy + 2z);;

val explicitCurryAddThreeNumbers : int -> int -> (int -> int)

Although this is possible to do in languages that don’t support currying, simulating it with closures
becomes tedious quickly. You need to explicitly nest each function, and each time a function is
called, you are restricted to passing in only a single argument at a time. F# supports currying by
default, so neither of these steps are necessary.

Partial Application [X217

Restrictions on Functions and Methods

As useful as they are, for the sake of efficiency and interoperability F# has imposed a few restric-
tions on functions and curried methods. Not knowing about these beforehand can cause quite a bit
of difficulty because they are somewhat nonintuitive.

First, functions defined outside the scope of a class cannot be overloaded. This makes sense
because conceptually a free floating function is bound to a name that does not include its full type
signature.

> let square x: int = x * x

let square x: double = x * x;;
error FS0037: Duplicate definition of value 'square'

Just as with data values, you cannot have multiple instances that have the same name within the
same scope. However, you can bind a function to an existing name in a subscope as long as the
type signature is exactly the same. Neither of these restrictions applies to class methods. As in other
NET languages, class methods may be overloaded.

> type SquareHelper =
static member square (x: int) = x * x
static member square (x: double) = x * x;;

type SquareHelper =
class
static member square : x:int -> int
static member square : x:double -> double
end

However, curried class methods cannot be overloaded. And any member of more than a single argu-
ment will be curried by default.
> type BadMultHelper =

static member multiply (x: int) (y: int) = x * y
static member multiply (x: double) (y: double)

1]

"

*
3

static member multiply (x: int) (y: int) = x * y;

The method 'multiply' has curried arguments but has the same name as another
method in this type. Methods with curried arguments cannot be overloaded.
Consider using a method taking tupled arguments.

The currying of class methods can be prevented by using tuple syntax for function arguments.

> type GoodMultHelper =
static member multiply (x: int, y: int) = x * y
static member multiply (x: double, y: double) = x * y;;

type GoodMultHelper =
class
static member multiply : x:int * y:int -> int
static member multiply : x:double * y:double -> double
end

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

218 [XCHAPTER13 FUNCTIONS

Don’t be concerned about the possible performance impact in potentially creating a tuple just to
pass in. In actuality, F# tupled arguments turn into normal .NET calls with discrete arguments
under the hood. Both types of functions will look the same from other .NET languages. The only
real difference is in how they are used in the F# language syntax.

FUNCTIONS AS FIRST CLASS

According to Structure and Interpretation of Computer Programs (http://mitpress.mit.edu/sicp/
full-text/book/book.html), a language construct is considered to be first class if it has no more
restrictions than other constructs of that language. In particular, the following properties are listed:

O It can be passed as a parameter.
© Tt can be returned as a result.

® It can be stored in variables and data structures.

If you consider function pointers, then you might say even humble C fulfills most of these require-
ments. However, like most imperative languages that inherit syntax from it, C lacks the capability
to create new functions at runtime. Functions cannot be composed or partially applied. In this way
they are clearly inferior to even a struct data type.

With the introduction of anonymous delegates in 2.0, C# functions also have all the properties previ-
ously listed and while somewhat cumbersome to use, may be considered first-class language constructs.
The main difference with F# is that treating functions as first-class is simple to do, requires little syntax,
and is leveraged just about everywhere when writing in the idiomatic language style.

Recursive Functions

Much as a data type can have a reference to itself, a true first class function should be able to as
well. In fact, it should be able to call itself using that reference just as it might any other function. A
function that does this is called a recursive function and the process of using recursive functions is
called recursion.

To write recursive functions in F#, you must define the function with the rec keyword. This
keyword binds the function in such a way as to be visible to itself.
let rec pow x n = if n <> 0

then x * pow (x) (n - 1)
else 1.0

This pow function raises its argument x to the nth power. It does this by calling itself repeatedly,
each time reducing the value of its n parameter by one and multiplying x by the result of the last call
to pow. However, in F# this is a poor implementation of pow.

To understand why, you first need to understand how this function will execute at runtime. Each
time pow calls itself, another stack frame is generated. In the ideal case, n eventually becomes zero
and pow will return 1 instead of calling itself again. Each layered call will then return, and the result
will be multiplied by x. Finally, the result of all of those multiplications will be returned.

Functions as First Class [X219

However, each function call takes up additional stack memory, and the stack is only a finite
size. If n is too large, eventually your program will run out of stack memory and throw a
StackoverFlowException.

> pow 2.0 100000;;
Process is terminated due to StackOverflowException.

This, combined with the overhead of each additional function call, makes for a convincing argu-
ment against recursion in other .NET languages. However, F# supports two features that make it
very good at recursion. First, F# has been heavily optimized to allow for deep recursion.

> pow 2.0 1000;;
val it : float = 1.071508607e+301

Second, it has a feature called tail call optimization that allows the compiler to turn some recursive
calls into fast loops under the hood. The caveat to this is that it only applies to recursive functions
whose final call leaves no work left to be done. If after calling itself the function has to do anything
other than return, it can’t be optimized. This may sound like it might make tail call recursion all but
useless, but as you’ll see here and in following chapters, it is profoundly important for both speed
and safety.

To make the above example tail recursive, you need to define the same problem in a way that
does not cause any work to be done after the recursive call is made. This is most easily done by
introducing a new argument to hold whatever it was you were relying on the stack to hold previ-
ously. A function argument used solely to pass itself data while performing recursion is called an
accumulator.

let rec tailpow x nr = if n <> 0
then tailpow (r * x) (n - 1) r
else r

In this better example r acts as the accumulator. It holds the result of the previous computation.
Instead of performing the computation lazily as the recursive calls return, they are performed at
each step and the result is passed into r. Finally, when n is equal to zero, the result is returned.

It might seem as though having the additional parameter is a big problem. However, it’s a simple
matter to embed this function inside another and so hide the accumulator.

let pow x n =
let rec tailpow (x:float) nr = if n <> 0
then tailpow x (n - 1) (r * x)
else r
tailpow x n 1.0

In fact, using techniques mentioned in the “Creating Functions at Runtime” section make this even
easier and opens up even more possibilities for recursion.

Higher Order Functions

Higher order functions are functions that use one particular property of a first class function. That
is, they take and/or return other functions. As an example, take a look at a simple function that
takes another function of no arguments.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

220

[XEHAPTER 13 FUNCTIONS

> let square X = X * X
let performAndAddOne func = func() + 1;;

val square : int -> int
val performAndAddOne : (unit -> int) -> int

> performAndAddOne (fun () -> square 2);;
val it : int =5

The function we pass in takes no arguments and returns the square of 2. When this is passed in to
performAndAddone it is executed, 4 is returned and 1 is added to it. What is interesting about this
is not what is being done, but how. The passed in function, as well as the function it is passed in to,
could just as well manipulate complex binary data.

Another slightly more advanced example of this from the .NET framework would be List<T>’s
generic ForEach function. ForEach takes a function and applies it to each member in a data set.
Popular functional examples include map, reduce, and fo1d, which are discussed in Chapter 16.

Beyond the simple idea of what higher order functions are, is the much more complex idea of what
they enable. Ultimately, they allow the programmer to define a program in terms of a series of
discrete data transformations instead of a series of state changes. Indeed, this idea is at the core of
functional programming.

In languages without higher order functions, while, do-while, for, and foreach must be imple-
mented in the compiler. The same would go for a generalized map, reduce, and fold. Even when
using a somewhat imperative style, higher order functions enable you to write these on your
own.

> let rec forEach (func: 'a -> unit) (collection: list<'a>) =
if (Seq.isEmpty collection) then
()
else
func (List.head collection)
forEach func (List.tail collection)

let printNum num = printfn "$i" num

let testList = [0; 1; 2; 3; 4 1;;

val forEach : ('a -> unit) -> 'a list -> unit
val printNum : int -> unit

val testList : int list = [0; 1; 2; 3; 4]

> forEach printNum testList;;

0

1

2

3

4

val it : unit = ()

Functions as First Class [X221

Without some of the more advanced constructs like recursion, higher order functions provide little
value other than syntactic sugar. Truly, it is the whole of the ideas presented in this part of the book
that when used together make functional programming so useful.

One important idea to take away from this is that, like many functional programming constructs,
higher order functions enable language-oriented programming. By leveraging them you can now
accomplish much of what you would have previously needed a new compiler to do.

Storing Functions

Although it is possible to do a great deal with only the ability to pass and return functions from
other functions, storing functions in the same way as other data types grants even more power. For
example, this technique is often leveraged to reuse a partially applied function over and over within
the same scope.
> let processEachDataset (datal, data2, data3) =

let transform = getDataTransform()

let newDatal = transform datal

let newData2 = transform data2

let newData3 = transform data3
(newDatal, newData2, newData3l);;

val processEachDataset : 'a * 'a * 'a -> 'a * 'a * 'a

It is also possible to perform some work with a set of functions that you have previously
accumulated.
> let processDatasetWithCurrentTransforms data =
let transforms = getDataTransforms ()
let rec applyTransforms data transforms =
match transforms with
| [1 -> data
\ thisTransform :: otherTransforms ->
applyTransforms (thisTransform data) otherTransforms
applyTransforms data transforms;;

val processDatasetWithCurrentTransforms : 'a -> 'a

One particularly strong example of this is F#’s asynchronous workflows. Using the Async module you
can take a collection of functions and send them off to separate threads to execute with little code.
Without the ability to put functions into collections, powerful constructs like this would be impossible.

Creating Functions at Runtime

The ability to pass and return functions from other functions is powerful alone. Greatly enhancing
this is the ability to create new functions at runtime.

In F# this can be accomplished in a number of ways that are each useful for a wide range of
practical applications. Closures provide the ability to bind variables out of the scope in which a
function is defined. First-class functional composition is used to build new functions out of others.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

222 [XCHAPTER13 FUNCTIONS

Closures

Lexical closures are by far the easiest way to create new functions at runtime. Simply put, when a
function is defined within another, it binds the values that are defined before it in the parent func-
tion’s scope. This can be done with any first-class language construct: values, objects, and functions.

Think back to school and the approximate derivative of a function. You might recall that it

can be expressed in terms of f(x + dx) — f(x — dx) / (2 * dx) where dx is a number close to zero.
Without higher order functions, this is quite difficult to calculate in a nonspecific way. Given
higher order functions, it’s possible to calculate the derivative of a function for a single value of x
in the following way:

let approxDerivative f dx x = (f(x + dx) - f(x - dx)) / 2 * dx;;

However, without a way to create a function, this can only find values of the derivative at certain
points. With closures you can create a function that creates the approximate derivative function of a
given function.

let approxDerivative f dx =
let derivative x = (f(x + dx) - f(x - dx)) / 2.0 * dx in
derivative

In this example the function and dx values are passed into the parent function and are captured by
the derivative function. This new function can now be returned containing these bound values.

The simplest implication of this is that, when repeatedly calling the same function, you no lon-

ger have the need to pass the same arguments again and again. Instead, you can simply create an
embedded function that closes over the unchanging arguments and call it. This is quite a boon, espe-
cially when dealing with mutable variables. You no longer need to consider that they might change
the bound function’s behavior. Once bound, values will not change unless mutated by reference.

Lambda Expressions

A lambda expression is simply special syntax for a function without a name. It can be defined com-
pletely inline. It can also still be curried and close over variables just like any other function. It can
even be assigned to a variable. However, it need not be.

Lambda expression syntax is simple, just use the fun keyword followed by a list of arguments and
then the function contents. Going back again to the derivative example, we can make the closure
version look much cleaner if we use a lambda expression:

let lamdbaDerivative f dx = fun x -> (f(x + dx) - f(x - dx)) / 2.0 * dx

In this example the function is returned directly without any need for intermediate constructs. The
syntax is clean and easy to understand, ideal for passing to or returning from other functions.

This feature is particularly useful when calling the many F# library functions that take another
function as a parameter. The resulting code reads much more easily than a separate function defini-
tion when written in this way.

However, do be careful when using multiline lambda expressions. They can easily get out of hand
and be difficult to differentiate from their surrounding context. They are also difficult to write tests

Summary [X223

against. For these reasons, if your lambda expression is longer than one or two lines, it is often bet-
ter to define it in a separate function instead.

Composition with Partial Application

As previously discussed, currying allows you to partially compose functions by applying only some
of the parameters a function requires. In the case of the derivative example, you can use partial
application to build a derivative function without using closures. Consider the initial example:

let calcApproxDerivative f dx x = (f(x + dx) - f(x - dx)) / 2.0 * dx

Given that this function already exists, we can use partial application to build a specific derivative
function quite easily.

let square (x: float) = x * x
let derivativeOfSquare = calcApproxDerivative square 0.001;;

So, while not quite as flexible as closures, in many cases it is possible to leverage partial application
to do the same thing.

SUMMARY

Your first task in getting acclimated to F# is to get a handle on the type inference system. It’s not
difficult; you just have to learn how the type inference system makes the decisions it does. When
things go wrong, use Visual Studio to mouse over your value and check out its inferred type. It will
soon be obvious where type annotations are needed.

Next, try playing with closures, partial application, and lambda expressions. Although entirely
avoidable in C# and VB.NET, one of the most important steps in getting familiar with F# is becom-
ing used to treating functions as first-class language citizens.

These ideas are much different than what you have been used to in idiomatic C#. Becoming adept at
leveraging these constructs primarily requires practice. Don’t be afraid to try things out in the inter-
active window and see what happens.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

14

Immutable Data

WHAT'’S IN THIS CHAPTER?

Understanding Why Immutability Is Good
Managing State and Mutation Responsibly

Passing References

@ © o ©

Enhancing Performance

The term functional is similar to object oriented in that it represents a collection of language
design choices and associated design methodologies. In this chapter, you’ll explore the data
side of functional programming in F# through a combination of language features and meth-
odology. When you arrive on the other side, you’ll know why immutable data structures are so
important and have ways of handling mutation in a safe way.

THE PROBLEM WITH STATE

For years, the vast majority of programmers have combined data in mutable form and opera-
tions on that data in constructs known as classes. Along with the numerous advantages

of this methodology come a number of disadvantages that are not often discussed. Most of
these disadvantages stem from the use of these classes as black boxes that each encapsulate
some part of the state of your program. This state is hidden by a mess of unspecified behavior,
implicit in the method definitions of the classes.

When consuming these classes, you find yourself unable to directly understand their imple-
mentation. The same call to a class method may produce different results, and often does. This
problem is not restricted to a single class because many classes mutate each other or are inter-
linked with complex networks of events. A single method call can cause a ripple effect of state
changes throughout your program.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

226 [XCHAPTER14 IMMUTABLE DATA

The foundation of your reasoning about these programs is unsound. As the number of possible state
changes per call increases, so does the number of potential bugs. A single change to a class can cause
bugs to appear in a completely different part of the program. This problem is compounded to a large
degree by asynchronous, parallel, or event-driven programming.

If you have attempted to build a test harness for a large legacy class, you have likely experienced this
firsthand. A precise model of behavior can be difficult to nail down when that behavior is defined by
a large number of stateful constructs. Modern testing and design methodologies have been invented
to help mitigate some of these problems, but little has been done to combat the source.

The good news is that by taking a functional approach you can eliminate the vast majority of these
errors. By changing your thinking to be in terms of immutable data and transformations of that
data, most of these problems simply evaporate. As all inputs and outputs are exposed, you can be
sure that calls are doing only what you expect. Intermediate program states are not exposed because
data is immutable and changes are made primarily through atomic reference swapping.

STATE SAFETY

Bar none, the biggest problem with modern object-oriented languages is that they make it near
impossible to guarantee any kind of state safety. This single problem is responsible for everything
from the modern concurrency nightmare to the epidemic of difficult-to-test code. Many sets of best
practices have arisen to help. However, they come at a heavy cost in terms of both performance and
code size because they lack language support.

Programwide State Safety

When data and operations on that data are inextricably intertwined, several problems arise. First,
object graphs are subject to simultaneous and conflicting state changes. Second, it cannot be ensured
that data is in the correct state for a call to complete successfully. Third, changes in seemingly unre-
lated objects may affect the output of a call. To understand these problems better, it is necessary to
examine them in more detail and see how having immutable data prevents these types of error from
occurring.

Errors arising from simultaneous operations on a stateful object graph are one of the primary rea-
sons for the great interest in functional programming. An unfortunate side effect of classes being
considered black boxes is that without examining the content of the class you’re using you can never
be sure that it was written in a thread-safe way.

type UnsafeAccessClass() =
let mutable i = 0
member this.IncrementTenAndGetResult () =
i<-1+ 10
1
As you can see when multiple calls to UnsafeAccessClass. IncrementTen () occur in separate
threads, the output will vary depending on the order of thread execution. To explore what can
happen, take a look at this small framework that views the possible outputs based on discrete tim-
ings by breaking this class into calls for each line.

State Safety [xX227

open System
open System.Threading

type UnsafeAccessClass() =
let mutable i = 0
member this.IncrementTen() =
i<-1+ 10
this
member this.GetResult() = i

let asyncExecuteClass (ac: UnsafeAccessClass) (firstSleep: int, secondSleep: int) =
async {
Thread.Sleep(firstSleep*firstSleep*20)
let incremented = ac.IncrementTen/()
Thread.Sleep(secondSleep*secondSleep*20)
let result = incremented.GetResult ()
return result, DateTime.Now.Ticks

}

let compareUnsafeExecution firstThreadSleeps secondThreadSleeps =
let ac = new UnsafeAccessClass|()
let threadwWork = [asyncExecuteClass ac firstThreadSleeps;
asyncExecuteClass ac secondThreadSleeps]
let results = Async.RunSynchronously (Async.Parallel threadWork)
if snd results.[0] < snd results.[1l] then
["1st", (fst results.[0]); "2nd", (fst results.[1l])]
else
["2nd", (fst results.[1l]); "1lst", (fst results.[0]) 1

Let’s examine each of the possible output cases.

//Execution Order: 1,1,2,2

\) let casel = compareUnsafeExecution (1, 2) (3, 4)
: //Execution Order: 2,2,1,1

dA:)I\?\IIIIl?I'JJ;?if:))rrI let case? = compareUnsafeExecution (3, 4) (1, 2)
Wrox.com //Execution Order: 1,2,1,2

let case3 = compareUnsafeExecution (1, 3) (2, 4)
//Execution Order: 2,1,2,1

let cased = compareUnsafeExecution (2, 4) (1, 3)
//Execution Order: 1,2,2,1

let case5 = compareUnsafeExecution (1, 4) (2, 3)
//Execution Order: 2,1,1,2

let case6 = compareUnsafeExecution (2, 3) (1, 4)

val casel (string * int) list = [("1lst", 10); ("2nd", 20)]
val case2 (string * int) 1list = [("2nd", 10); ("1lst", 20)]
val case3 : (string * int) list = [("1st", 20); ("2nd", 20)]
val cased (string * int) list = [("2nd", 20); ("lst", 20)]
val caseb (string * int) list = [("2nd", 20); ("lst", 20)]
val caseb (string * int) list = [("1lst", 20); ("2nd", 20)]

Code snippet ThreadDataTesstMutable.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

228 [XCHAPTER14 IMMUTABLE DATA

Notice that given just this simple example with a single mutated variable and two threads, there are
six possible execution orderings. The result of this is two possible return values and two possible
return orderings. The number of orderings will explode exponentially with the number of threads.
Even worse, the number of different possible results has an exponential relationship with both the
number of mutations and the number of threads.

Now, let’s examine the possible outputs given an immutable class.
type SafeAccessClass(i) =
‘) new() = SafeAccessClass (0)
)

(
member this.IncrementTen() = new SafeAccessClass(i + 10)

ﬁx‘an,'mg;%'g; member this.GetResult() i

Wrox.com
val casel (string * int) list = [("1lst", 10); ("2nd", 10)]
val case2 (string * int) 1list = [("2nd", 10); ("lst", 10)]
val case3 : (string * int) list = [("1st", 10); ("2nd", 10)]
val cased (string * int) 1list = [("2nd", 10); ("lst", 10)]
val caseb (string * int) list = [("2nd", 10); ("lst", 10)]
val caseb (string * int) 1list = [("1st", 10); ("2nd", 10)]

Code snippet ThreadTestlmmutable.fs

Note that the return ordering cannot be guaranteed. However, the combination of immutability and
F#’s asynchronous workflows make this a nonissue.

Almost all the system.Drawing namespace works in a similar way, and extensive steps must be
taken to ensure calls to Clone () are performed in the correct places. Often consumers of these
classes make underlying assumptions about the state of internal class data with disastrous results.
When using immutable data, considerations of this type become completely unnecessary.

This leads to the problem of ensuring data is in the correct state before a call is made. Method
calls may require a particular ordering for internal data structures to be properly initialized, or
assumptions may be made about the state of method inputs. This results in the need for explicit
preconditions to verify that these assumptions are true. Preconditions that when violated, can
result in runtime failures.

Let’s take a quick look at an example of implicitly required ordering of method calls with a common
pattern that is often used in C#:

exception NotInitialized

type InitializeClass() =
let mutable initialized = false;
member this.Initialize() =
initialized <- true
member this.Perform() =
if not initialized then raise NotInitialized

The problems generated by the need for preconditions are two-fold. First, if the programmer for-
gets about even one precondition, the data may be in a bad state and cause an exception of an
unhandled type to be thrown. Second, it is much better to correct program flow issues of this type

State Safety [xX229

at compile-time. As discussed in the previous chapter, it is possible to prevent the need for most

of these preconditions by effectively leveraging the F# type system. Immutability also helps here
immensely by ensuring that the contents of class fields do not change after construction. These two
features alone eliminate the need for most precondition checks.

Finally, there is the issue of seemingly unrelated objects affecting each other in unexpected ways.
As classes often hold shared or bidirectional references, a change in one class may cause unexpected
behavior in another. As an example of this, take a look at a simple settings class and the classes that
reference it.

type ListGenerationManager () =
‘) let mutable GeneratelInstances = 0
: member this.InstancesToGenerate
mﬁmm with get () = Generatelnstances
Wrox.com and set (value) = Generatelnstances <- value
member this.GetIntegerGenerator() = new IntegerListGenerator (this)
member this.GetFloatGenerator() = new FloatListGenerator (this)

and IntegerListGenerator (manager: ListGenerationManager) =
member this.Generatelnstances() =
List.init manager.InstancesToGenerate (fun i -> int i)

and FloatListGenerator (manager: ListGenerationManager) =
member this.GenerateInstances() =
List.init manager.InstancesToGenerate (fun i -> float i)

Code snippet ListGenerationManager.fs

In cases where invisible shared state is present, attempting to fix a bug without cataloging every-
where the classes sharing that state are constructed or used is extremely difficult. Without full
knowledge of their context, it is impossible to correctly reason about their behavior. Furthermore,
attempting to change the referenced class may cause unexpected behavioral changes to pop up in its
consumers. Just as the runtime state changes ripple through these objects, so do the effects of behav-
ioral changes.

With immutable data you can be confident that these types of situations do not occur as changes to
the internal state of the object will always be accompanied by the construction of a new object. This
prevents interobject behavioral dependencies from being created in the first place.

These common problems are all easy to avoid when programming with immutable data. Given

the same input set, your functions will reliably produce the same output. Data is transformed and
passed around, instead of being encapsulated and kept around. As you might expect, this greatly
reduces the number of state-related bugs in a given program. As your data is unable to change, you
can rest assured that these types of unexpected conditions will not occur.

Local Data State Safety

A big problem with mutable data is that it can be difficult or impossible to reason about what the
contents of a variable will be after a call is made. This is part of the reason extensive debugging
tools are needed when programming in most modern object-oriented languages. Will a passed-in list

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

230 [XCHAPTER14 IMMUTABLE DATA

be kept in the same order? Will the data transform you gave as input still contain the same values?
Worse, even after spotting a bug caused by the unexpected mutation of data, it can be time-consum-
ing to find exactly where that mutation took place. Changes can occur anywhere the object is passed

or held.

When classes are designed this way, it creates a situation where the ordering of calls and handling
of data becomes very important. Without extreme care brittle code is the result. A great example of
this is the .NET List class. Any call that uses this class can potentially cause its contents to change.

type ListData =
struct
val mutable Number: int
val mutable Name: string
new(number, name) = { Number = number; Name = name }
override this.ToString() =
String.Format ("Number: {0}, Name: {1}", this.Number, this.Name)
end

let clrList = new List<ListData>([| new ListData(l, "Johnny");
new ListData(5, "Lisa");
new ListData(3, "Mark") |]);

> clrList.ToArray();;
val it : ListData [] =
[|Number: 1, Name: Johnny; Number: 5, Name: Lisa; Number: 3, Name: Mark|]

let sortedClrList =
let ListDataComparison (dl:ListData) (d2:ListData) =
dl.Number - d2.Number in
clrList.Sort(ListDataComparison)
clrList

> sortedClrList.ToArray();;
val it : ListData [] =
[|Number: 1, Name: Johnny; Number: 3, Name: Mark; Number: 5, Name: Lisal]

> clrList.ToArray();;
val it : ListData [] =
[|Number: 1, Name: Johnny; Number: 3, Name: Mark; Number: 5, Name: Lisal]

let reversedClrList =
clrList.Reverse()
clrList

> reversedClrList.ToArray () ;;
val it : ListData [] =
[|Number: 5, Name: Lisa; Number: 3, Name: Mark; Number: 1, Name: Johnny\]

> sortedClrList.ToArray();;
val it : ListData [] =
[|Number: 5, Name: Lisa; Number: 3, Name: Mark; Number: 1, Name: Johnny|]

> clrList.ToArray();;
val it : ListData [] =
[|Number: 5, Name: Lisa; Number: 3, Name: Mark; Number: 1, Name: Johnny|]

State Safety [X231

One commonly used method of avoiding data mutation is to explicitly clone the class each time it is
passed. This adds extra code to your program and makes it slower, but at least it allows some sem-
blance of safety.

let clrList = new List<ListData> ([| new ListData(l, "Johnny");
new ListData(5, "Lisa");
new ListData(3, "Mark") []);
let sortedClrList =
let newList = new List<ListData>(clrList)
let ListDataComparison (dl:ListData) (d2:ListData) =
dl.Number - d2.Number in
newList.Sort(ListDataComparison)
newList

> sortedClrList.ToArray() ;;
val it : ListData [] =
[|Number: 1, Name: Johnny; Number: 3, Name: Mark; Number: 5, Name: Lisal|]

> clrList.ToArray();;
val it : ListData [] =
[|Number: 1, Name: Johnny; Number: 5, Name: Lisa; Number: 3, Name: Mark]|]

F# does all it can to prevent you from unexpectedly mutating the contents of a list, and it does so at
compile time. In fact, even if the members of 1.istData are marked mutable, the following sample
will not compile. The immutable property is maintained for the data structure and its contents.

> let incrementedClrList =
clrList.ForEach((fun data -> data.Number <- data.Number + 1))
clrList

error FS0256: A value must be mutable in order to mutate the contents or take the
address of a value type, e.g. 'let mutable x = ...'

Unfortunately, other .NET languages don’t make such guarantees. In these languages, great pains
must be taken and great inefficiencies must be incurred to avoid mutation. The following C# exam-
ple compiles and can be used without any errors being raised.

public static List<ListData> IncrementAllInList (List<ListData> list)
{

list.ForEach((data => data.Number += 1));

return list;

Therefore, when using these languages, it is often wise to do a deep clone before passing your list
into another part of your program. This is the only way you can be confident that neither the order
nor the content of the elements will change. This process is often very resource-intensive and can be
painful to implement.

An alternative to this is to build a read-only version of a .NET list by using List . AsReadonly.
However, this returns an TList and so can’t be used in places where a standard list is taken. Also, using
a read-only list may protect against reordering, element addition, and element removal, but it won’t stop
a consumer from directly modifying the elements themselves. Unless you have control over the entire
API, AsReadonly and the TList it returns are little more than a bandage on a gaping wound.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

232 [XCHAPTER14 IMMUTABLE DATA

Now, in C# you would wisely implement TCloneable and a generic List<T>. DeepClone () exten-
sion method to make this easier on yourself. However, the vast majority of the .NET framework

is composed of structs and sealed classes that do not implement TCloneable. For this reason,
separate deep clone extension methods for each List-DataType combination must be created.

let deepCloneList (list: List<ListData>) =
let newList = new List<ListData>()
list.ForEach((fun data ->
newList.Add(new ListData(data.Number, data.Name))))
newList

Thankfully, F# comes with a number of immutable data structures that, when used, eliminate these
problems. Now, take a look at similar code that uses F# lists instead (for more information on F#
lists see Chapter 5).

> let initialList = [new ListData(l, "Johnny");
new ListData (5, "Lisa");
new ListData (3, "Mark") 1;

val initialList : ListData list =
[Number: 1, Name: Johnny; Number: 5, Name: Lisa; Number: 3, Name: Mark]

> let sortedList =
let numberSelector (d: ListData) = d.Number in
List.sortBy numberSelector initialList

val sortedList : ListData list =
[Number: 1, Name: Johnny; Number: 3, Name: Mark; Number: 5, Name: Lisa]

> let reversedList = List.rev initialList

val reversedList : ListData list =
[Number: 3, Name: Mark; Number: 5, Name: Lisa; Number: 1, Name: Johnny]

Notice that, after being constructed, you can always be confident about the contents of an F# list
instance. It will never be unexpectedly changed by a call. Coupled with immutable list members,
this makes it easy to reason about exactly what your code will do even before writing a test or walk-
ing through it in a debugger.

To further this ability to reason about code, functional programs are constructed with a different
approach than those that are object oriented. As you may have noticed, instead of using classes to
create black boxes, you are using immutable data structures and functions that return new data.
This practice ensures that when viewing code it is easy to tell exactly what is being done and exactly
where those effects are applied, even in the face of out-of-scope code changes.

DATA MUTATION

One of the advantages of F# is that, although it encourages immutability, it is not a pure functional
programming language. That is, F# allows for the mutation of data. This difference frees program-
mers to use the most expressive paradigm for the algorithm they are implementing, instead of being
forced to use convoluted or inefficient code.

Data Mutation [X233

However, this puts the responsibility for state safety solely in your hands. Although pure functional
languages force the programmer to behave, it is entirely possible to build F# programs with all the
problems discussed in the previous two sections. For this reason, it is important to carefully consider
the patterns you use to make state changes in your program.

Avoiding Mutation

An important part of becoming an effective F# programmer is learning to avoid the mutable key-
word whenever possible. Once you get the hang of the language constructs you’ll see that in the vast
majority of cases data mutation is completely unnecessary. It is usually only when you begin to use
imperative .NET framework classes, such as WinForms, that you need to start using a significant
amount of mutable data.

As an example, consider putting numbers into buckets according to their least factor. Using mutable
data this task might be accomplished in the following way:

J

Available for
download on
Wrox.com

let leastFactor n =

let max = int (sqgrt (float n))

let mutable lastTried =1

let mutable keepLooping = true

while keepLooping do
lastTried <- lastTried + 1
if n % lastTried = 0 || lastTried > max
then keepLooping <- false

if lastTried > max then n else lastTried

let bucketByLeastFactors numbers =

let mutable buckets = Array.create (1 + List.max numbers) []

for number in numbers do
let 1f = leastFactor number
buckets.[1f] <- [number] @ buckets.[1lf]
buckets

let printFactorBuckets factorBuckets =

for i in 0 .. (Array.length factorBuckets) - 1 do
let factoredList = factorBuckets.[1]
if not (List.isEmpty factoredList) then
printfn "$d -> %A" i factoredList

let factorBuckets = bucketByLeastFactors [0 .. 25]

\%

P J0 WP o

printFactorBuckets factorBuckets;;

-> [0]
-> [1]
-> [24; 22; 20; 18; 16; 14; 12; 10; 8; 6; 4; 2]
-> [21; 15; 9; 31
-> [25; 5]
-> [7]
-> [11]

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

FactorBucketsMutable.fs

234 [XCHAPTER14 IMMUTABLE DATA

13 -> [13]
17 -> [17]
19 -> [19]
23 -> [23]

It may look like employing mutable data here is your only option as, at the very least, it seems like
you need a place to accumulate your primes into buckets. However, if you restructure the flow of
data, you will see that it is unnecessary in all cases.

let leastFactor n =
\) let maxFactor = int (sqgrt (float n))
: let rec factorTest = function
ﬁmﬁggﬁigﬁ | i when i > maxFactor -> n
Wrox.com | i whenn $1i=0->1
| i -> factorTest (i + 1)
factorTest 2

let bucketBylLeastFactors (numbers: int list) =
let rec addToBucket bucketIndex n bucketsList =
let neededBuckets = bucketIndex - List.length bucketsList
if neededBuckets >= 0 then
addToBucket bucketIndex n
(bucketsList @ [for i in 0 .. neededBuckets -> [] 1)
else
List.mapi
(fun 1 bucket ->
if bucketIndex = i then ([n] @ bucket)
else bucket)
bucketsList
List.fold
(fun bucketsList n -> (addToBucket (leastFactor n) n bucketsList))
List.empty
numbers

let printFactorBuckets factorBuckets =
List.iteri
(fun 1 factored ->
if List.length factored > 0
then printfn "%$d -> %A" i factored)
factorBuckets

let factorBuckets = bucketByLeastFactors [0 .. 25]

FactorBucketsImmutable.fs

> printFactorBuckets factorBuckets

0 -> [0]

1 -> [1]

2 -> [24; 22; 20; 18; 16; 14; 12; 10; 8; 6; 4; 2]
3 -> [21; 15; 9; 31

5 -> [25; 5]

7 -> [7]

Data Mutation [X235

11 -> [11]
13 -> [13]
17 -> [17]
19 -> [19]
23 -> [23]

First, compare the 1eastFactor functions. The mutable iterative sample has been changed into a tail
recursive iterative function by breaking it into subcases. It still effectively iterates from 2 to the
maxFactor but instead of directly looping and mutating the variable, in each iteration the factorTest
function is called with the possible factor incremented by one.

The changes to bucketByLeastFactors are significantly more extensive. Because the goal is to
build a list of lists, you must thread this data structure through each of your numbers to be factored.
After each number is visited, a new bucketsList is returned. In effect, this is what List . fold does.

After generating the least factor with the (leastFactor n) call, the result is passed, along with the
current number and the current bucketsList, into the addToBucket function. This function takes
a bucketList and returns a new bucketList with the passed-in number appended to the bucket at
the index of the least factor.

This is done by first checking to make sure the appropriate bucket exists; if it doesn’t then enough
buckets are appended to ensure that it does and recursively calls itself with the freshly expanded
bucketList. If it does, a new list of lists is created via the List.mapi function. The only differ-

ence between the lists being that the bucket at the least factor index has the newly factored number
appended to the front. This bucketList is then returned and used in the next iteration of List. fold.

Getting the hang of this can be a bit difficult at first. This example contains two recursion patterns
and two List module functions. F# provides quite a few constructs that help reduce the burden of
immutability. The first step in becoming adept at F# is learning these patterns and constructs so that
you can program effectively with immutable data. With a little practice they become as familiar as
the design patterns and loops you have used for years in object-oriented programming.

When first starting out with F#, the prospect of learning all this can be quite intimidating. The most
important thing to keep in mind is isolating mutable data within the confines of a single function.
This practice provides most of the safety of immutability but without needing deep knowledge of
functional patterns and immutable data structures.

Bubble and Assign

One technique for relatively safe state mutation, which is easy to begin with, is bubble and assign.
When possible, you should always bubble your changes up the call stack and do your variable
assignment within the same scope.

let simulationLoop () =
let worldState = getInitialWorldStateArray ()
while simulationIsRunning() do
let changes = getWorldStateChanges (worldState)
for change in changes do
let i, j, newValue = change
worldState. [1].[]j] <- newValue
updateUI (worldState)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

236 [XCHAPTER14 IMMUTABLE DATA

This is a structural example and does not compile.

By simply returning changes to the current scope and then applying them, state changes can be iso-
lated to this single function. Each iteration of the getWorldStateChanges function returns a set of
unapplied changes to the worldstate array. These changes are then applied to the array one at a
time in a very controlled way.

This simple technique is easy to understand and effective in many cases. It keeps state changes
within the scope in which the mutable data is defined and is generally low overhead. The trade-off is
that you are limited in terms of where your data can be accessed from and the types of data that can
be easily used.

Reference Cells

You will often find the bubble and assign technique too constraining. In these cases, reference cells
are usually the easiest solution. With reference cells your state mutations are made with an atomic
reference assignment operation. This replaces an entire data instance with a new one. As your
state is enclosed in a heap allocated reference, you can now mutate it from within closures or other
functions.

The most common way to do reference swapping is via a reference cell. To do this, define a reference
cell with the ref keyword, assign it with the reference assignment operator and retrieve its underly-
ing value with the dereference operator.

> let refInt = ref 10;;
val refInt : int ref = {contents = 10;}

> refInt := 20;;
> refInt;;
val it : int ref = {contents = 20;}

> let normalInt = ! refInt;;
val normalInt : int = 20

Because using a reference cell effectively boxes your type within a reference type, it is now pos-
sible to mutate it from anywhere it or any closures that contain it are accessible. For this reason it
is important to carefully consider the implications of both where the reference cell is located and
where it is accessed from. It is well known that even judicious use of global variables can lead to
major problems with parallelization, code reuse, and the ability to reason about what is happening.
However, global variables are just the worst possible case of a larger domain of antipatterns. Any
widely accessible mutable data will have these same characteristics, albeit to a lesser degree.

let gameLoop actors display input =
let mutable gameIsRunning = true
let worldState = ref (getInitialWorldStateArray())
let applyChanges changes =
for (i,j,value) in changes do

Data Mutation [X237

(!'worldState).[i].[j] <- value
while gameIsRunning do
for actor in actors do
applyChanges (actor.getChanges !worldState)
applyChanges (input.getChanges !worldState)
display.update !worldState
gameIsRunning <- not input.quit

@ This is a structural example and does not compile.

Note that in the preceding example, all the state changes are confined to this one function. As a gen-
eral rule of thumb, it is best to limit assignment and passing of mutable data to as small of a scope
as possible.

Now, consider the following worst-case example:

let gameIsRunning = ref true
let worldState: option< option<int> array array > ref = ref None

let initializeWorldStateArray () =
worldState := Some(getInitialWorldStateArray())

let updateGameStateFromActors () =
for actor in !actors do
actor.updateWorldState worldState

let updateGameStateFromUserInput () =
userInput.updateWorldState worldState
gameIsRunning := not userInput.quit

let updateUI () = ui.update worldState

let gameLoop () =
initializeWorldStateArray ()
while !gameIsRunning do
updateGameStateFromActors ()
updateUI ()
updateGameStateFromUserInput ()

@ This is a structural example and does not compile.

This is effectively a bunch of mutable variables and functions that transparently operate on those
variables. As you do not even require function wrappers to access or change the data, the state of
this program can be changed anywhere silently and is all but impossible to debug. Code constructed
in this way is also notoriously difficult to reuse or parallelize.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

238 [XCHAPTER14 IMMUTABLE DATA

If instead, you swap close to your reference by moving the mutable reference declaration down the
stack and push the needed changes up the stack, the negative effects of mutability are isolated to a
small portion of your overall code. It is always best to keep your mutable data access and assign-
ments limited to as small of a scope as possible.

Passing by Reference

Although often overlooked, passing by reference is a very effective way to perform mutation. As
only those functions granted special access can manipulate the reference, you can be confident that
hidden mutations are not happening elsewhere. Passing by reference requires three steps be taken.
First, the variable must be marked as mutable. Second, you must wrap the value in a reference cell
with the in boxing operator. Third, the function must be annotated to take its argument as a refer-
ence with the byref keyword.

> let mutable number = 10
let doubleNumber (number: int byref) = number <- 2 * number
doubleNumber (&number) ;;

> number; ;
val it : int = 20

By using the byref keyword, calls that perform mutation stand out as they now require a boxing
operator to be applied.

let gameLoop actors display input =
let mutable gameIsRunning = true
let mutable worldState = getInitialWorldStateArray ()
let applyChanges changes (worldState: 'a option [] [] byref) =
List.iter
(fun (i,j,value) -> (worldState).[1].[Jj] <- value)
changes
while gameIsRunning do
for actor in actors do
applyChanges (actor.getChanges worldState) (&worldState)
applyChanges (input.getChanges worldState) (&worldState)
display.update worldState
gameIsRunning <- not input.quit

@ This is a structural example and does not compile.

Effectively, the byref keyword makes a contract between the caller and the callee that states that it
has permission to mutate the reference. For this reason it is the safest way to perform direct mutation.

Message Passing

A very effective way to enhance the safety of state mutation is through message passing. This entails
using discriminated union subtypes (see Chapter 7, “Complex Composite Types”) as the enumera-
tion of possible messages along with the data corresponding to that message. Simply put, the type

Performance Considerations [X239

name, the message, describes the change to be made while the type itself contains the data necessary
to complete that change. Message passing is most commonly used when describing programming
with mailboxes. However, as you’ll see in the Data and State Flow subsection of Chapter 15, “Data
Types,” mailboxes are not necessary to gain the safety benefits of message passing.

PERFORMANCE CONSIDERATIONS

As you saw in the Data Safety section, the mutable nature of .NET constructs can make it difficult
to reason about code. This can be alleviated somewhat by judicious copying, but this practice has
significant performance implications. This is why F#’s immutable data structures are designed in
such a way as to minimize the number of objects that must be collected.

For example, when changes to a list are made, only the parts of it that are affected by the change
are replaced in the new instance. In practice, this use of intelligent implementations under the hood
largely mitigates the performance cost of immutability. These, and other optimizations, are why it is
always important to avoid making assumptions about performance when using F#.

One important trick to know is that you can enable timing in the F# interactive window. This is a
fast way to check out the performance of new code without the need for a profiler or timing harness.

> #time;;
--> Timing now on

> let 1 = [0 .. 10000007;;
Real: 00:00:00.390, CPU: 00:00:00.390, GC gen0O: 5, genl: 2, gen2: 0

To turn it off, simply type the command again.

> #time;;

--> Timing now off

However, as not all optimizations are available to F# interactive, it is always best to ultimately use a
profiler on Release mode generated assemblies to find areas of slow performance. At best, the #time
feature can give you a general idea.

As testing every line of code written in this way would be tedious and time-consuming, it is impor-
tant to understand the underlying implementation and performance characteristics of each of the
basic F# data structures. For the sake of convenience, I’ll expand upon what was previously stated in
Chapter 7.

Lists

F# lists are immutable singly linked lists and so are designed for left-to-right access. Head and itera-
tive access are always o0 (1). However, indexing to a particular element is 0 (n), where n is the index
of the node in the list. For this reason, large F# Lists are best used with forward iterative operations
only. Thankfully, functional programming is largely oriented toward the iterative processing of data
and, due to their immutability and data sharing, lists are often your best choice.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

240 [XCHAPTER14 IMMUTABLE DATA

Due to the 0 (n) element access of linked lists, when using them it is important to carefully consider
the performance characteristics of your implementation. When appending two lists, it is best to
place the longer of the two on the right whenever possible. This allows the entire structure of the
right list to be shared with the newly created list.

> let smallList = [0 .. 100]
let bigList = [0 .. 10000000];;

> smallList @ bigList;;
Real: 00:00:00.000, CPU: 00:00:00.000, GC genO: 0, genl: 0, gen2: 0

> bigList @ smallList;;
Real: 00:00:02.214, CPU: 00:00:02.215, GC gen0O: 29, genl: 17, gen2: 0

Both ordering and operator use are important considerations when generating lists with recursive
functions. If your recursive function appends to the right side of a list, the append will grow slower
with every recursive call. However, it is also important to remember that if you have a recursive call
on the left side of a list operation, your function cannot take advantage of tail recursion optimiza-
tion and will both execute more slowly and be at risk of stack overflow. For these reasons, in most
cases it is best to generate lists iteratively with accumulators, list comprehensions, or List.init.

A simple example of this is the reversal of a list. The following naive implementation will give
0(n~2) performance.

let rec badReverse list =
if List.isEmpty list then []
else badReverse list.Tail @ [list.Head]

Looking at this example, two flags should immediately pop up in your mind. First, 1ist.Head, a
single element, occurs on the right side of the append operator, which means it will be quite slow.

> badReverse [0 .. 10000];;

Real: 00:00:05.105, CPU: 00:00:05.101, GC genO: 396, genl: 90, gen2: 1

val it : int list =
[10000; 9999; 9998; 9997; 9996; 9995; 9994; 9993; 9992; 9991; 9990; 9989;
9988; 9987; 9986; 9985; 9984; 9983; 9982; 9981; 9980; 9979; ..]

Second, the recursive call is on the left side and so tail recursion optimization will not be used. This
means you are at risk of a stack overflow.

> badReverse [0 .. 1000001];;

Process is terminated due to StackOverflowException.

If you instead thread an accumulator through your list reversal, you can perform the operation in
0(n) time and without the risk of a stack overflow. Generally, the phrase threading an accumulator
simply means to pass yourself intermediate values with each recursion. This topic is discussed in fur-
ther depth in Chapter 16.

let appendReverse list =
let rec recReverse rest reversed =
if List.isEmpty rest then reversed
else recReverse rest.Tail ([rest.Head] @ reversed)

Performance Considerations [xX241

recReverse list []
> appendReverse [0 .. 1000001;;

Real: 00:00:00.033, CPU: 00:00:00.031, GC gen0O: 1, genl: 0, gen2: O

val it : int list =
[100000; 99999; 99998; 99997; 99996; 99995; 99994; 99993; 99992; 99991;
99990; 99989; 99988; 99987; 99986; 99985; 99984; 99983; 99982; 99981; ..]

There’s also a third issue here. A single element is repeatedly added, but append is used instead
of cons. Whenever repeatedly adding a single element to a list, it’s better to use the cons operator
instead of creating a new list and appending it; cons simply creates a single new list node while
append contains quite a lot of logic to ensure all possible states of both lists are covered. With lists
up to 100,000 elements, the impact is negligible. However, when you have millions of elements the
impact becomes quite significant.
let consReverse list =
let rec recReverse rest reversed =
if List.isEmpty rest then reversed

else recReverse rest.Tail (rest.Head :: reversed)
recReverse list []

> let list = [0 .. 10000001];;
Real: 00:00:00.291, CPU: 00:00:00.296, GC gen0O: 7, genl: 7, gen2: 2

> appendReverse list;;
Real: 00:00:00.345, CPU: 00:00:00.343, GC gen0O: 6, genl: 4, gen2: 1

> consReverse list;;
Real: 00:00:00.064, CPU: 00:00:00.062, GC gen0O: 2, genl: 2, gen2: 0

To simplify things further, you can use pattern matching syntax. This makes the two recursive cases
stand out apart from each other better.
let patternMatchingReverse list =
let rec recReverse rest reversed =
match rest with
| [1 -> reversed
\ head::tail -> recReverse tail (head::reversed)
recReverse list []

However, as in most cases, the best solution is to use the built-in list module operators as they are
concise, safe, and designed with performance in mind.

> List.rev [0 .. 100000];;

Real: 00:00:00.015, CPU: 00:00:00.015, GC gen0O: 0, genl: 0, gen2: O

When using these operators, you can be confident that the underlying implementation has been done
in an intelligent way and that your code will be easy for others to understand. Also, if you take a
glimpse at the F# source code, you will see that library list operations are almost all implemented

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

242 [XCHAPTER14 IMMUTABLE DATA

via pattern matching. When no existing list operation fits your need, pattern matching is most often
the best choice.

Arrays

F# arrays are in all ways traditional .NET arrays. They are contiguous in memory, and just as in
other .NET languages, indexing is always 0 (1). Also, as arrays are themselves a special class of
CLR reference type, they are by far the most efficient way to store and operate on sets of other value
types in memory. However, appending to, or otherwise changing the structure of arrays will often
require a completely new allocation. For this reason when managing large datasets, which don’t
need random access, lists are the better choice.

It is also important to note that F# does not enforce immutability for arrays.

>let a=[|0..5]];;
val a : int [] = [|O; 1; 2; 3; 4; 5“

> a.[0] <- 1;;
val it : unit = ()

> aj;
val it : int [] = [|l; 1; 2; 3; 4; 5|]

When using arrays in F#, you must always keep in mind that their contents may change, especially
in the case where they are passed in to a standard .NET library. Of course, this is not quite as much
of a problem when you completely control access to the array. F# assignment requires a special oper-
ator that is easy to spot. Also, when designing for fast concurrency with shared mutable datasets,
arrays are often the ideal choice.

However, as discussed in the data mutation section, it’s best to choose the scope of your mutable
data carefully. Do think carefully before using globally shared mutable arrays.

Sequences

F# segs are simply instances of the TEnumerable interface. Similar to lists, sequence indexing is
0(n), where n is the cost of evaluating the contents of each prior element. The benefits of using
sequences are that they are evaluated when called and are simple to manage. However, this delayed
evaluation can come at a high performance cost if you are not careful. For example, while segs cost
very little to allocate, if repeatedly iterated over performance can be very slow.

> let simpleSeq = seq { for i in 0 .. 1000000 do yield i }
Real: 00:00:00.000, CPU: 00:00:00.000, GC genO: 0, genl: 0, gen2: 0

> for i in 0 .. 10 do Seqg.iter (fun i -> ()) simpleSeq
Real: 00:00:01.241, CPU: 00:00:01.232, GC genO: 0, genl: 0, gen2: 0

One way to mitigate this somewhat is to use Seq.cache. This function will generate a sequence that
caches each value of its output when generated. The next time the sequence is used, already visited
elements won’t need to be evaluated. However, seq. cache is only fast for expensive element compu-
tations. It does not remove the overhead in TEnumerable itself.

Performance Considerations [X243

> let cachedSeq = Seq.cache simpleSeq; ;
Real: 00:00:00.000, CPU: 00:00:00.000, GC gen0O: 0, genl: 0, gen2: O

> for 1 in 0 .. 10 do Seqg.iter (fun i -> ()) cachedSeq;;
Real: 00:00:00.688, CPU: 00:00:00.686, GC gen0O: 73, genl: 0, gen2: 0

Often a better approach for repeatedly iterated-over sequences is to convert them into a list at the
first available opportunity. While conversion will carry the same cost as the initial sequence tra-
versal, additional iterations will be much cheaper.

> let listFromSeqg = Seq.toList simpleSeq
Real: 00:00:00.313, CPU: 00:00:00.312, GC gen0O: 7, genl: 2, gen2: 1

> for i in 0 .. 10 do List.iter (fun i -> ()) listFromSeqg
Real: 00:00:00.031, CPU: 00:00:00.031, GC gen0O: 0, genl: 0, gen2: 0

In this particular case, due to the large number of elements, the creation of the list is rather expen-
sive. However, with only ten iterations, the conversion to a list is well worth the initial cost as it is
nearly twice as fast.

Of course, this technique is not applicable when using sequences that are evaluated based on a func-
tion that references mutable data. However, this style of using sequences should usually be avoided
for the same reasons described above in the State Safety section.

Tuples

Perhaps second only to lists, tuples are one of the most frequently used data structures in F#. Most
frequently, they are used to conveniently bind together sets of function inputs and outputs and make
for much more readable functional code. In .NET 4.0 and later, F# tuples are .NET tuple types in
the System namespace.

Although some were concerned with the design decision to implement tuples as reference types,
after much testing it was found that this made little or no difference for the vast majority of applica-
tions and broadly increased tuple interoperability.* In cases where performance is paramount, such
as number crunching in a tight loop, using a predefined struct in the place of a tuple may grant a
small performance improvement.

Records

Records are similar to C# anonymous types and are used in much the same way. They allow you

to quickly generate data-only classes with named fields for data processing. Similarly to tuples, the
fact that records are immutable reference types may cause a small amount of additional overhead. In
some cases you may find using a struct in their place grants a performance improvement.

structs

Fundamentally, F# structs are no different from those in any other .NET language. As they are
value types, they have significantly different performance characteristics than classes; structs

*http://msdn.microsoft.com/en-us/magazine/dd942829.aspx

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

244 [XCHAPTER14 IMMUTABLE DATA

are best used only in cases where the use of many small objects creates significant performance or
memory overhead.

Because structs are value types, they can be allocated on the execution stack instead of the heap
and do not need to be garbage collected; structs also have much smaller memory footprints than
classes. However, it is also important to note that each time a value type is passed, it is copied. For
this reason, haphazard use of structs can actually reduce the performance of your program.

One example of a case where structs can be beneficial is when repeatedly creating a large number
of small data instances, such as in image processing.

type StructDhata =
struct
val R: byte
val G: byte
val B: byte
new(r, g, b) = {R=1r; G=g; B=Db]}
end

type RecordData = { R: byte; G: byte; B: byte }

let pixels = 1920 * 1200
> let structArray = [| for i in 0 .. pixels do

yield new StructData(Ouy, Ouy, Ouy)\]
Real: 00:00:00.387, CPU: 00:00:00.390, GC gen0O: 0, genl: 0, gen2: 0

> let recordArray = [| for i in 0 .. pixels do
yield { R = Ouy; G = Ouy; B = Ouy }|]
Real: 00:00:00.846, CPU: 00:00:00.780, GC genO: 5, genl: 2, gen2: 0

For the best possible performance in these situations it is best to use only a combination of arrays
and value types, that is structs, enums, and primitives. When exclusively value types are used, the
entire data structure can be laid out contiguously in memory. This is ideal for fast member access
and caching.

One of the few differences with structs in F# is that members are immutable by default. This is
done via automatic property generation. As structs are primarily used to enhance performance,
and the added call needed when accessing a property does take a small amount of additional time, it
is useful to know that when struct members are defined as mutable they are instead generated as
publicly accessible fields.

type MutableStructData =
struct
val mutable R: byte
val mutable G: byte
val mutable B: byte
new(r, g, b) ={R=r; G=g; B="D0b}
end

As always when dealing with mutable data, it is important to consider the data safety ramifications
of this design decision before making this optimization. In the vast majority of cases, you’ll find the
improvement in removing one call is negligible. Even with each iteration accessing every RGB value

Summary [X245

in every pixel in the equivalent of a 20MP image, my tests saw only a 10% performance improve-
ment. Also, it’s important to always keep in mind that value types are copied when passed unless

they are inside of an array or another reference type. This means that when you mutate them the

changes will not show up in any parent function or method.

SUMMARY

As you saw in this chapter, F# gives you the tools to mitigate many of the problems inherent in
objected-oriented programming by providing a set of useful data constructs. Data immutability
helps make your programs safe, parallelizable, and easy to understand.

However, F# neither enforces your use of immutable data structures nor good mutation practices.
Without proper application F# code can be just as buggy, rigid, and difficult to maintain as any
other language. This especially goes for the optimizations mentioned in the performance consid-
erations section of this chapter. As the benefits only rarely outweigh the risks, it is best to always
optimize only after your profiler has shown a problem. If you take only one thing away from this
chapter, make it the careful consideration of all variables mutable.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

15

Data Types

WHAT'’S IN THIS CHAPTER?

Understanding ambiguously defined data
Encapsulating state in types

o
o
® Leveraging discriminated unions
o

Defining recursive data types

Specifying types is often thought of as merely a way to tell your computer how to handle the
contents of some location in memory. However, as time has progressed, it has been discovered
that data types actually can do much more. Beyond telling the compiler which operations to
perform on binary data, types can provide a powerful way to label the conceptual meaning
of your data. In effect, they become contracts about the semantic meaning of that data. Both
data and functions labeled in this way are easier to reason about and can help to ensure the
correctness of your code.

AMBIGUOUSLY TYPED DATA

A problem rife in current mainstream design methodologies is the frequent use of ambiguously
typed data. A bool, a double, an exception and a null are all very general. They each carry no
meaning other than that which is given to them by their surrounding context. The compiler
can do nothing to check if your method inputs, and their internal uses are valid.

What is stopping you from passing a double that represents a probability into a method that
wants a specific scalar measurement? Even NASA, with its legendary software QA, has experi-
enced defects of this type. One of these failures has even caused the failure of a very expensive
mission. You may be surprised to learn that null references and mishandled exceptions are

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

248 [XCHAPTER15 DATATYPES

exactly the same class of defect. They are both caused by inadequately constrained inputs and out-
puts. They both also cost countless hours in wasted bug-fixing time each year.

To combat this, F# has two features: units of measure (See Chapter 3, “Primitive Types”) and dis-
criminated unions (See Chapter 7, “Complex Composite Types”). Units of measure allow you to give
semantic meaning to basic types and ensure that they are not allowed in places they don’t belong.
Discriminated unions allow you to do the same but for any type of function inputs and outputs. In
leveraging these constructs you can greatly reduce the number of bugs in your programs.

FAILING FAST

The fail fast methodology applies well to all types of programming. When a program is designed to
fail fast, computation isn’t wasted, incorrect state changes are not made, and you are left in a better
situation to correctly compensate for the specific type of failure right when it happens.

In using object-oriented design, you often think of failing fast as most important because incorrect
state changes must be avoided at all costs. However, in statically checked functional programming,
you think of failing fast to prevent incorrect programs from ever executing in the first place. Compile
time is the fastest type of failure, the easiest to correct, and has the least impact on your users. The
more classes of error that your compiler can protect you from, the more likely your code is to be
correct after the first successful compilation.

SPECIFICITY

As mentioned in the chapter overview, using runtime preconditions to constrain data is a less than
ideal solution. This practice greatly increases the chance of runtime failure from untested edge cases
or errors introduced by the modification of code. If instead you can encode the specific meaning

and constraints implied by that meaning into your types, you can easily avoid most of these types of
errors. F#’s powerful type system allows you to do just that, and without a significant increase in the
size of your code, a decrease in its performance or an increased maintenance cost.

In the data safety section of Chapter 14, “Immutable Data,” you saw how immutability can help
enhance your ability to reason about code. However, although it is easier to reason about the state
of an immutable list, immutability in no way constrains its contents. That is, you can still pass an
unordered list into a function that requires an ordered one.

let nLargestNumbers n sortedNumbers =
let rec nFirstElements n list =
match n with
Available for
download on | 0 -> [1]
Wrox.com | _ -> match list with

[11 -> 1]
| h::t -> [h] @ nFirstElements (n - 1) t
nFirstElements n sortedNumbers

Code snippet nLargestNumbers.fs

Specificity [X249

In some cases, your first inclination might be to check the order of that list as a precondition.
However, ensuring the correct ordering of a list is an 0 (n) operation. As previously shown, you
could just order the list each time the function is called, but this is an 0 (nLog (n)) operation.
Wouldn’t it be better if you could somehow encode the ordering of the list in its type?

As you’ll see in this section, by leveraging discriminated unions you can both enforce these states for
function inputs and label the state of your function outputs.

Option as an Example

A great place to start when thinking about the F# type system is the option type. As discussed in
Chapter 5, “Composite Types,” the option type allows you to encode the lack of a value in a much
more type safe way than null. The reason the option type is such a great place to start is that this
same idea of encoding meaning in the type system can be used in many other ways.

let getFormattedWebData url =
let webData = getWebData url
match webData with
\ Some (data) -> formatData data
| None -> None

Option wraps another type and must be explicitly unwrapped later to be used. The returned infor-
mation about the state must be dealt with before the data can be touched. As option<T> must be
explicitly checked before being opened, you are forced to verify its contents before trying to perform
any computation with it. The great value in this is that when you have instances of types that aren’t
options, you can be sure that they contain a value. This is in contrast with null, which may always
be present and so must repeatedly be checked for, thus littering your code with frequent precondi-
tion checks and potentially causing unexpected runtime null reference exceptions.

Now, it is important to know that when dealing with standard CLR libraries you may still
encounter null in F#. In these cases it is always best to wrap these calls to return an option type
immediately. However, when using with the F# specific libraries, the option type is used by default
and this need not be a consideration.

Encapsulating State in Types

You just learned about how the option type gives you the advantage of no longer having to perform
runtime precondition null checks on data’s state as your checks are instead being enforced by the
type system. This same idea can be extended beyond simply replacing null. In actuality, it can be
used to encode and enforce any discretely identifiable piece of state information.

As a trivial example, consider an ordered list. With some algorithms the difference between hav-
ing an appropriately ordered data set or an unordered data set can be the difference between 0 (n)
and possible 0 (n~2) performance. Others, which are written to depend on ordering, will not
function at all.

One example of the later is the removal of duplicates. With a sorted list this is a simple 0 (n) opera-
tion. Without ordering, this process requires a completely different, and much more complex,
algorithm.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

250 [XCHAPTER15 DATATYPES

let removeDupesFromOrdered orderedList =
List.foldBack (fun element noDupes ->
match noDupes with
| [1 -> [element]
| (h::_) -> if element = h then noDupes
else [element] @ noDupes)
orderedList []

> removeDupesFromOrdered [0; 1; 1; 2; 3; 4; 5; 5; 61;;
val it : int 1list = [0; 1; 2; 3; 4; 5; 6]

What if you want to ensure that only a sorted list could be passed in to your function? In C# this
would likely mean inheriting from ReadonlyCollection and perhaps adding an extension method
to list which returned a new sorted instance. However, this would mean writing a significant
amount of code and, as constructors are not inherited, potentially updating that code with each
additional .NET framework release.

However, in F# you can leverage the discriminated union feature and do the same thing with signifi-
cantly less code, in a similar way to how the option type is implemented.

’ type OrderedList<'a> = | OrderedList of 'a list
N let toOrderedList list = OrderedList (List.sort list)
Available for
download on
Wrox.com let toList (OrderedList orderedList) = orderedList

let removeDuplicatesFromOrderedList (orderedList: OrderedList<'a>) =
let removeDupes list =
List.foldBack (fun element noDupes ->
match noDupes with
| [1 -> [element]
| (h::_) -> if element = h then noDupes
else element :: noDupes)
list T[]
match orderedList with
| OrderedList list -> OrderedList (removeDupes list)

Code snippet OrderedList.fs

As you can see here, you can no longer use normal lists with this version of the removeDuplicates.

removeDuplicatesFromOrderedList [0; 1; 1; 2; 2; 3]
error FS0001: This expression was expected to have type
OrderedPropertyList<'a>
but here has type
'b list

To use this function you now must wrap your list to encode in the type system that it is ordered.

> let orderedList = toOrderedList [0; 1; 1; 2; 2; 3]
val orderedList : OrderedList<int> = OrderedList [0; 1; 1; 2; 2; 3]

> removeDuplicatesFromOrderedList orderedList
val it : OrderedList<int> = OrderedList [0; 1; 2; 3]

Specificity [X251

Even more interesting, you can encode several different possible data states into one discriminated
union type. This allows your functions to take or return many different information states and, in
so doing, behave in the best possible way for every possible situation.

type PropertyList<'a> =
‘) | Normal of 'a list

| Ordered of 'a list

mlmg;%?rr. | NoDuplicates of 'a list
Wrox.com
let CreateNoDuplicatesListFromPropertyList list =
function
| NoDuplicates(_) -> list

| Normal (noProperty) ->
NoDuplicates (noProperty |> Set.ofList |> List.ofSeq)
| Ordered(ordered) ->
NoDuplicates (List.foldBack (fun element noDupes ->
match noDupes with
| [1 -> [element]
| (h::_) -> if element = h then noDupes
else element :: noDupes) ordered []

Code snippet PropertyList.fs

By taking information that would have been implicit in the ordering of your calls and using a type
wrapper to make this assumption explicit, you are moving contextual constraints into the type
system. This will increase the compile-time safety of your code by ensuring that your data will
only go into the correct functions. This also allows you to verify things that would otherwise be
time consuming to explicitly verify with preconditions or class wrappers, such as the internal state
of a list.

Avoiding Exceptions

One significant enhancement that comes from the wrapping of state in a type is the lack of need for
exceptions. Exceptions are both costly in terms of performance and dangerous in terms of behavior.
Also, the need for many try blocks detracts significantly from the readability of your code.

In most cases, exceptions are not all that exceptional and so need not behave differently than a nor-
mal function return value. In the vast majority of cases, they are simply a way of having multiple
function output types in languages that lack discriminated unions.

In F#, instead of frequently using exceptions, it is better to encode your various return states within
discriminated unions. In cases where you might be tempted to return null, you use the option type
as previously described. However, when you want to create your own set of return types, you need
to define your own discriminated union.

type UriOutput =

| Uri of System.Uri
| Malformed of string

let buildUri stringUri =
try Uri(new System.Uri(stringUri))
with | _ -> Malformed(stringUri)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

252 [XCHAPTER15 DATATYPES

As in this example, it is often advantageous to wrap existing .NET method calls in functions that
return discriminated unions. In this way, you can greatly increase code readability. In F#, exceptions,
along with their unseemly try-with blocks, are no longer necessary in most cases. When every state
is enumerated explicitly, your code is much easier to maintain and is significantly easier to read.

Data and State Flow

Just as you saw with exceptions, discriminated unions allow you to encode many different data
states directly into your type and so ensure that they are properly handled. Designing systems to
behave in this way is a simple four-step process. As an example, consider a webClient interface that
takes either a Uri or a String and returns the correct data structure for the type of data found.

First, enumerate your input states with a discriminated union type.

type WebClientInput =
J | StringInput of String
| UriInput of System.Uri

Available for
download on

Wrox.com Code snippet DownloadWithWebClient.fs

Second, do the same for your possible output states.

type WebClientOutput =
\) MalformedUri of string

TextContent of string

download on BinaryContent of byte []
Wrox.com NoContent

|
Available for I
|
|

WebClientException of System.Net.WebException

Code snippet DownloadWithWebClient.fs

Third, you must build your function to return each of these states in the appropriate situation.

let downloadwWithWebClient (inputUri: WebClientInput) =
J let downloadFromUri (uri: System.Uri) =
try
d“:]’:;['ﬁg;ﬁigl: use client = new System.Net.WebClient ()
Wrox.com let dlData = client.DownloadData (uri)

if dlData.Length = 0 then NoContent
else if (client.ResponseHeaders.["content-type"]
.StartsWith(@"text/"))
then
let dlText =
System.Text.Encoding.Default.GetString (dlData)
TextContent (dlText)
else
BinaryContent (dlData)
with
| :? System.Net.WebException as e -> WebClientException(e)
match inputUri with
| UriInput(classUri) -> downloadFromUri classUri
| StringInput(stringUri) ->

Specificity [X253

match buildUri stringUri with
| Uri(s) -> downloadFromUri s
| Malformed(s) -> MalformedUri (s)

Code snippet DownloadWithWebClient.fs

Finally, consume and appropriately handle your expected return states.

let printWebClientOutput clientOutput =
‘) match clientOutput with
| MalformedUri(uri) -> printfn "Input Uri was malformed: %s" uri
Available for TextContent (content) -> printfn "Page Content: %s" content
Wrox.com BinaryContent (content) -> printfn "Binary Data: %d" content.Length

NoContent -> printfn "No content was found."

download on }
\
| webClientException(e) -> printsn "Exception: %s" (e.ToString())

Code snippet DownloadWithWebClient.fs

The F# compiler issue warnings when not all returned states are handled. This provides a much
safer style of data handling than exceptions that are in no way encoded in the function signature.
Also, as match statements support wildcards, you need to consider only the relevant states to your
current context.

, open System.IO

let downloadToFile (inputUri: WebClientInput) outputLocation =

d“m,',?g;%?,: match downloadwithWebClient inputUri with
Wrox.com \ TextContent (text) -> File.WriteAllText (outputLocation, text)

| BinaryContent (binary) -> File.WriteAllBytes(outputLocation, binary)
| _ -> printfn "Download Failed"

Code snippet DownloadToFile.fs

It is important to keep in mind that when using wildcards you will no longer receive compiler warn-
ings when some states are not covered in your match statement. For this reason, it is usually best to
explicitly match all states in production code. This ensures that potentially relevant states will not
be missed with future code changes.

In this example, all your possible inputs and outputs are discretely defined. The beauty in this is that
you can now handle these cases in an explicit and elegant way. If you wanted to add an additional
input type, you would need only extend webClientInput and add another case to your match state-
ment. Similarly, if you wanted to add another output case, you simply extend webClientOutput
and add that case as a new return value of your function. This makes it simple to add new input
types and output states as the need arises.

Recursively Defined Data Types

Beyond their use in increasing type safety, discriminated unions may also be used to define com-
plex data structures through recursive type definitions. Recursive type definitions are discriminated

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

254 [XCHAPTER15 DATATYPES

unions in which some subtypes leverage either themselves or a child type in its definition. One sim-
ple example of this would be a binary tree.

type BinaryTree<'a> =
‘) | Node of BinaryTree<'a> * BinaryTree<'a>

| Leaf of 'a
Available for
download on
Wrox.com Code snippet BinaryTree.fs

In this case, a node may either be a leaf or contain a tuple of two more binary trees. This technique
can be leveraged to quickly build data structures that would have taken orders of magnitude more
code in other languages.

One might argue that, although the definition is simplified, it may be more difficult to implement
functionality for this data structure based on the nodes themselves not containing any methods. As
you’ll see in the following depth-first search example, this is not the case. It is a simple matter to
externalize what would have previously been object-oriented code.

let rec dfs tree leafData =

\) match tree with

| Leaf(l) -> if 1 = leafData then Some(l) else None
Available for | Node (a,b) -> let dfsA = dfs a leafData in
dmg;‘fzglﬁ" if Option.isSome dfsA then dfsA

else dfs b leafData

let binaryTree =
Node (
Node(Leaf(l), Leaf(2)),
Node(Leaf(3), Node(Leaf(4), Leaf(5))));;
val binaryTree : BinaryTree<int> =
Node (Node (Leaf 1,Leaf 2),Node (Leaf 3,Node (Leaf 4,Leaf 5)))

dfs binaryTree 5;;
val it : int option = Some 5

dfs binaryTree 33;
val it : int option = None

Code snippet BinaryTree.fs

As you can see here, recursive data type definitions are quite powerful constructs. When combined
with recursive functions, they can be leveraged to build what would otherwise be complex data and
difficult to maintain structures with very little code.

Although perhaps a bit intimidating at first, with a little practice it’s a trivial matter to go from

a definition in which an object calls its children to one in which a function recurses on each data
structure node. In most cases, this can be done by replacing what would have been the this con-
struct with the object operated on. Getting your head around this is one of many paradigm shifts
necessary to become effective at F# when coming from an imperative language.

Summary [X255

SUMMARY

Although it may seem more difficult to think carefully about the best way to type your data, it is
not significantly different than spending time thinking about how you might structure your classes
in object-oriented programming. A little bit of time spent upfront thinking conceptually about your
data can give great benefits in terms of clarity and safety.

By making the compiler work for you, you can catch many more kinds of bugs at compile-time with-
out having to hope that your tests check for those particular types of edge cases. In many cases, you
can completely avoid using exceptions and do not need to deal with the extra conceptual overhead
they introduce into your code. This all adds up to less technical debt and higher quality code. It’s a
big win for both the programmer writing the code and those who must maintain it later.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

16

List Processing

WHAT'’S IN THIS CHAPTER?

Understanding collection processing abstractions
Subsetting collections
Transforming collections

Understanding accumulators

@ © 6 o6 ©

Leveraging scanning and folding

Functional programming in F# really shines when dealing with the processing of linear data
structures. A linear data structure is any in which traversal of every node is linear in nature.
That is, each element of the data structure can be visited sequentially in terms a previous ele-
ment. Lists and sequences fit into this category. Arrays do partially as they are often accessed
in this way.

The reason F# is particularly suited to this is primarily the great number of constructs
provided by the language framework. F# provides a copious number of functions for the
manipulation and analysis of each of its data structures. Although large in number, the ele-
gance and simplicity provided by these functions is one of the fundamental reasons F# excels
at list processing.

COLLECTION ABSTRACTIONS

There are many ways to think about processing the elements of the list. You might even view
much of the history of programming to be the history of linear data set processing. First, con-
sider the lineage of imperative list iteration.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

258 [XCHAPTER16 LIST PROCESSING

At the lowest level there is the humble JMP instruction from which you must construct your list
from scratch; in higher level languages this is analogous to the goto statement. At a slightly higher
level of abstraction there is the while statement which, in exchange for some flexibility in where
you jump to, expresses the idea of repeatedly doing something until a condition is met much more
clearly. This concept is also the most basic idea behind iteration. Furthering this exchange of flex-
ibility for clarity there is the for statement that gives us a direct way to express iteration.

Then, at the highest level of imperative iteration, there is the foreach statement. The foreach
statement is clear and concise but lacks much of what for can do. In fact, the difficulty in using
foreach for things other than explicit iteration is what makes it so much clearer. You sacrifice the
ability to determine ordering and skip elements to glance at a small chunk of very expressive code
and immediately understand what it does.

So, imperative languages offer a one-dimensional and increasingly restrictive set of options for con-
trolling execution flow. On one side of the spectrum, there is the liberal goto statement, and on the
other the restrictive foreach statement.

On the other hand, functional programming offers a much richer set of tools. On one side of the
progression sits recursion, and on the other a profusion of higher order functions project outward.
These functions have names like filter, map, reduce, and fold. Although similar to foreach in
clarity of expression, each is used to elegantly express different ideas.

MODULE FUNCTIONS

Unlike in the .NET libraries, where modification of data structures is most often performed by
calling class methods on a specific data structure instance, F# provides static modules for each

data structure. In the vast majority of cases these module functions do not modify their param-
eters; instead, they return a fresh data structure to which the modification has been performed.

In this chapter, many of the collection module functions will be discussed. It is important to note
that not every construct discussed here applies to and works exactly the same way with every data
structure. For example, the seq module will delay work while List and Array will perform opera-
tions immediately.

The goal is less to give you a comprehensive guide to module functions and more to give you the
knowledge necessary for understanding the classes of problems they solve, how to use them to solve
these problems, and an understanding of the jargon used in the language documentation.

COLLECTION SUBSETS

Subset functions are used to find the parts of an existing collection that satisfy some predicate. A
predicate is simply a function that takes an instance of some type and returns true or false based
on some criteria. In these cases, the predicate function must take the same type as the elements of
the collection. Because of their simplicity, they are an ideal place to start when learning about list
processing with higher order functions.

Collection Subsets [X259

filter

filter takes a collection, and a predicate of that collection’s contained type. It then returns a col-
lection containing only the elements for which that predicate returns true.

> let names = ["Sally"; "Donny"; "Johnny"; "Josephine"; "Jose"; "Al"];;
val names : string list = ["Sally"; "Donny"; "Johnny"; "Josephine";
HJosell; |IA1I|]

> let joNames =
List.filter

(fun (name: string) -> "Jo" = name.Substring(0,2))
names; ;
val joNames : string list = ["Johnny"; "Josephine"; "Jose"]

As with almost the entirety of F#’s list processing functions, filter does not modify the original
collection. Instead, it returns a completely new collection containing the operation’s output. In this
case the type inside of the filter lambda must be qualified with an annotation; this can be avoided by
using the forward pipelining operator as discussed in Chapter 17.

The usefulness of filter might seem obvious. Think of it as the F# version of a sQL. WHERE clause.
It is used to cut your collection down into the subset of elements needed for your remaining compu-
tations or desired output.

partition

partition is similar to filter; the function you pass into it has exactly the same signature. The
difference between them is that, although filter returns only the elements for which your func-
tion returned true, partition also returns the elements for which false was returned in a second
collection.

> let numbers = [1 .. 10];;
val numbers : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
> let even, odd = List.partition (fun x -> x % 2 = 0) numbers;;

val odd : int list = [1; 3; 5; 7; 9]
val even : int list = [2; 4; 6; 8; 10]

In this example the elements of the first list are partitioned into odd and even subsets. As partition
returns a tuple of the two lists, the tuple assignment syntax is used to bind the results to two sepa-
rate variables.

At first glance, it seems that the primary benefit of partition is that it allows you to cut your data-
set into two parts with only a single pass. However, as an additional benefit to doing a multipass
filter, there is no need to worry about dropped or duplicate elements. The resulting collections can

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

260 [XCHAPTER16 LIST PROCESSING

be processed and then recombined later to produce a complete set. With partition, you can be sure
that the two resulting collections will contain nonoverlapping subsets of the original collection.

ELEMENT TRANSFORMATIONS

Element transformations perform a given function on each element of a collection independently. In
all cases, the result is a new collection that maintains the element ordering of the initial collection.
The defining characteristic of these functions is that each element’s transformation has no dependen-
cies on the result for other elements. One benefit to this is that they can often be done in parallel for
significant performance benefit. Another is that they are easy to think about because you need to
consider only what is happening on a per-element basis.

map

In its most basic form, map takes a single collection and a transformation function. This function is
applied to each element and creates a corresponding new element in the resulting collection. This is
useful for a great number of things from element type conversions to calculations across a large data
set.

> let friends = ["Sally"; "Donny"; "Jay"; "Josephine"];;
val friends : string list = ["Sally"; "Donny"; "Jay"; "Josephine"]

> let lowercaseFriends =

List.map
(fun (str: string) -> str.ToLower())
friends;;
val lowercaseFriends : string list = ["sally"; "donny"; "jay"; "josephine"]

In this example the names in the friends list are normalized by converting them to lowercase. This is
done by calling ToLower () on each element. Note that each transformation is independent, needing
no information from other nodes in the list.

There are also a few slightly more complex variations of map. Consider combining datasets of
equal length where the ordering of those datasets represents some type of meaning correspondence
between the elements of those datasets. mapn (where n is a number) allows you to map across mul-
tiple data structures at once. If the collections are of unequal length, the remaining elements in the
longer collection will be ignored.

For example, you may have a list of names and a list of birthdays where the index in those lists rep-
resents the same unique person. You can use map2 to combine those birthdays with the person.

> let birthdays = ["August 20th"; "April 10th"; "December 31st"; "October 3rd"l];;

val birthdays : string list =
["August 20th"; "April 10th"; "December 31st"; "October 3rd"]

> let friendsWithBirthdays =
List.map2

Element Transformations [X261

(fun name birthday -> sprintf "%s was born on %s" name birthday)
friends birthdays;;

val friendsWithBirthdays : string list =
["Sally was born on August 20th"; "Donny was born on April 10th";
"Jay was born on December 31st"; "Josephine was born on October 3rd"]

Similarly, map3 allows you to do this with three collections. It’s just like map2 except it takes three
lists and a function of three elements.

> let places = ["Hartford, CT"; "Los Angeles, CA"; "Tokyo, Japan";
"Munich, Germany"];;

val places : string list =
["Hartford, CT"; "Los Angeles, CA"; "Tokyo, Japan"; "Munich, Germany"]

> let friendsBirthdaysAndLocation =
List.map3
(fun name birthday loc ->
sprintf "%s was born on %s and lives in %s" name birthday loc)
friends birthdays places;;

val friendsBirthdaysAndLocation : string list =
["Sally was born on August 20th and lives in Hartford, CT";
"Donny was born on April 10th and lives in Los Angeles, CA";
"Jay was born on December 31st and lives in Tokyo, Japan";
"Josephine was born on October 3rd and lives in Munich, Germany"]

As elements might already have a meaning prescribed in their ordering, it is often useful to know the
index of the element we are currently mapping. This is where mapi comes into play. It’s just like map,
except that it gives your function the current index in the collection as the first argument.

> let users = ["Sally"; "Donny"; "Johnny"; "Josephine"; "Jose"];;
val users : string list = ["Sally"; "Donny"; "Johnny"; "Josephine"; "Jose"]
> let usersWithUniqueNumber = List.mapi (fun i user -> (i, user)) users;;

val usersWithUniqueNumber : (int * string) list =
[(0, "Sally"); (1, "Donny"); (2, "Johnny"); (3, "Josephine"); (4, "Jose")]

mapi is useful when ordering is important. It can have similar utility to the id in a database
table. It might be used to inspect neighbor elements or to preserve initial ordering. For example,
you might want to give each element an id before using partition so that you might recombine
them later.

mapi2 is simply the combination of mapi and map2. It takes two collections and a function. It then
gives your function one element from each of these collections at a time and their index.

> let lastnames = ["Struthers"; "Osmond"; "Depp";
"de Beauharnais"; "Canseco"];;

val lastnames : string list =
["Struthers"; "Osmond"; "Depp"; "de Beauharnais"; "Canseco"]

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

262 [XCHAPTER16 LIST PROCESSING

> let usersWithLastnamesAndUniqueNumbers =
List.mapi2
(fun 1 first last -> (i, sprintf "%s %s" first last))
users lastnames;;

val usersWithLastnamesAndUniqueNumbers : (int * string) list =
[(0, "Sally Struthers"); (1, "Donny Osmond"); (2, "Johnny Depp");
(3, "Josephine de Beauharnais"); (4, "Jose Canseco")]

In all cases, the underlying idea in using map remains consistent. It is used to map the meaning of
each element in a collection to a single element of a new collection, a transformation from one or
more collections to another of equal length and ordering.

choose

Choose is effectively a combination of map and filter. The difference in thinking about how to
use this function lies in that with choose the return type of each function application must be an
option type. Return values wrapped in some are included in the result collection whereas None
signifies that the current computation should not be included in the result.

> let friends = ["Sally"; "Donny"; "Jay"; "Johnny";
"Josephine"; "Jose"l;;

val friends : string list
["Sally"; "Donny"; "Jay"; "Johnny"; "Josephine"; "Jose"]

> let lowercaseShortNames =
List.choose
(fun (x: string) ->
match x with
| x when x.Length > 5 -> None
| x -> Some (x.ToLower ()))
friends;;

val lowercaseShortNames : string list = ["sally"; "donny"; "jay"; "jose"l]

In this example, names longer than five characters have been filtered by returning None when they
are encountered. Shorter names are converted to lowercase and wrapped with some to signify that
they should be included in the result.

By electing to use choose instead of a separate map and filter, you can save the time associated
with the wasted map computations and a second iteration through the collection. Also, in many
cases it can be clearer what the purpose of an operation is when it is done in a single step.

collect

Collect is a variation on map in which the evaluation of each element is expected to return a new
collection. These collections are then assembled to produce a single result collection.

> let partiallyParsedNames = ["Thomas; Richard"; "Derk; Kant; Kafka";
"Captain Crunch; Mister Rogers"];;

Accumulators [X263

val partiallyParsedNames : string list =
["Thomas; Richard"; "Derk; Kant; Kafka"; "Captain Crunch; Mister Rogers"]

> let parsedNames =
List.collect
(fun (field: string) ->
Array.toList (
field.Split([|"; "|], System.StringSplitOptions.None)))
partiallyParsedNames; ;

val parsedNames : string list =
["Thomas"; "Richard"; "Derk"; "Kant"; "Kafka"; "Captain Crunch";
"Mister Rogers"]

Interestingly, collect can produce the same filtering behavior as choose. When you want an ele-
ment to be excluded, simply return an empty list.

> let friends = ["Sally"; "Donny"; "Jay"; "Johnny";
"Josephine"; "Jose"l;;

val friends : string list =
["Sally"; "Donny"; "Jay"; "Johnny"; "Josephine"; "Jose"]

> let lowercaseShortNames =
List.collect
(fun (x: string) ->
match x with
| x when x.Length > 5 -> []
| x -> [x.ToLower () 1)
friends;;

val lowercaseShortNames : string list = ["sally"; "donny"; "jay"; "jose"]

Most commonly, collect is useful when you want to flatten a collection of collections. It can also
be used to break single complex elements into new collection subsections on-the-fly. One example
of where this can be exceptionally useful is when grooming large amounts of text data that may be
incorrectly delimited.

ACCUMULATORS

Before continuing, it is important to understand the idea of an accumulator and what “threading
an accumulator through the computation” means. Thinking back to the idea of a standard foreach
loop, an accumulator would be a variable defined outside of that loop that is used to hold state
between each iteration. Accumulators are useful in functional programming for exactly the same
reasons that loop external variables are in imperative programming.

Because in functional programming the mutation of variables is avoided, instead of updating an
external value, you return what you would have wanted the contents of that external variable to be
after the evaluation of the current element. This accumulated value is passed to your function each

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

264 [XCHAPTER16 LIST PROCESSING

time an element is evaluated from the previous to the current application. This is what is meant by
“threading an accumulator.”

reduce

At the heart of reduce is a simple idea: take a collection of elements and boil it down to a single
instance of the same type. Among other things, it is quite useful for comparing or summing collec-
tion elements.

Application of reduce is done by passing in a reduction function and a collection. For the initial
element evaluation, the first two collection elements are passed into the reduction function. After
that, the current element and the accumulator are passed. This is done in left-to-right order over the
entire collection. When all elements have been visited, the accumulator is returned.

> let friends = ["Sally"; "Donny"; "Jay"; "Johnny";
"Josephine"; "Jose"l;;

val friends : string list =
["Sally"; "Donny"; "Jay"; "Johnny"; "Josephine"; "Jose"]

> let longestName =
List.reduce
(fun (longest: string) (this:string) ->
if longest.Length >= this.Length then longest else this)
friends;;

val longestName : string = "Josephine"

In this example, the accumulator is the longest name found so far. For each element, the length of
the current longest name is compared with the length of the current element, and the larger of the
two is then returned. Each element in the collection is tested in this way. After all elements have
been tested, the accumulator will contain the longest string in the list. This accumulator is what is
finally returned.

In some cases it is beneficial to perform your reduce starting with the right side of the collection
instead of the left. In these cases you can use reduceBack. This is a variation on reduce that per-
forms the same operation except in the reverse order. Functionally, it is the equivalent of first revers-
ing your collection and then performing a normal reduce.

> let longestName =
List.reduceBack
(fun (this: string) (longest:string) ->
if longest.Length >= this.Length then longest else this)
friends;;

val longestName : string = "Josephine"

Note that with reduceBack the order of the reduction function is reversed. The second argument is
the accumulator and not the first. This difference is to reflect the order in which you are traversing
the collection.

Accumulators [X265

Several of the more simple collection functions can be implemented quite simply in terms of reduce.
Some that come to mind are average, max, min, count, countby, and sum. Each of these operate on
a collection and return a single instance that is the same type as what the collection contains. To be
sure you have a firm understanding of how accumulators work, I suggest trying to implement each
of these functions in terms of reduce.

fold

Conceptually, fold is much like reduce, although significantly more general. The differences stem
from the fact that fold can have an accumulator that is of a different type than that of its input
collection’s elements. Because of this, fold requires that an initial value for the accumulator be
passed in.

Application of fold is done by passing in a folding function, a collection and an initial accumulator
value. When complete, the final accumulator value is returned. fold visits each element once, apply-
ing the given function to the current element and the accumulator. Much like reduce this is done in
left-to-right order over the contents of the collection.

> let strings = ["The"; "quick"; "brown"; "fox"; "jumps";
n overﬂ ,. n the n ; " lazyll ; "dOg"] ; ’.

val strings : string list =
[n The" ; "quick" ; "brown" P fox" ; "jumps" ; "over"; " the" ; "lazy“ P dog“]

> let totalLength =
List.fold
(fun acc (str: string) -> acc + str.Length)
0
strings;;

val totalLength : int = 35

In this example, the accumulator is the combined length of all strings measured so far. For each
element, the accumulator is added to the length of the current list and that value is returned as the
next value. As you can see, the initial value of the accumulator is given as zero.

Also much like reduce, fold has a right-to-left version named foldBack. One case where this is
particularly useful is when folding over a list to build another list.

> let spacedStrings =
List.foldBack
(fun str acc ->
if List.isEmpty acc then [str] @ acc
else [str] @ [" "] @ acc)
strings

[1::

val spacedStrings : string list =
[n The n ; " n ; " quickn ; n " ; Ilbrown " ; n " ; " fox“ ; n " ; n jmps " ; " n ; " Overll ;
n " ,. n the n ; " n ,. n lazy" ’. " n ,. n dogll]

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

266 [XCHAPTER16 LIST PROCESSING

In this example, the list being empty on the first iteration allows the correct insertion of spaces.
As the rightmost element is the first visited, the accumulator is empty when the folding function is
applied.

Were you to use fold instead of foldBack, this simple operation would be quite expensive for long
lists. As discussed in the optimization section of Chapter 14, appending to the tail of a list requires
destroying that list and building an entirely new one. By folding backward, you can simply append
to the head of the accumulator list while maintaining the initial ordering and preserving the exist-
ing list structure. In effect, you are building a new list right to left while visiting the initial list in the
same order.

Both fold and foldBack have implementations that allow you to fold over two collections at the
same time. These are named fold2 and foldBack2. Like map2, both collections may contain differ-
ent types. However unlike map2, fold2 and foldBack2 require the input lists to be the same length.

> let punctuation = [" "; " "; " "; ; H

val punctuation : string list = [" "; "™ "; " n, w v, v ow, ; ; ;

> let totalLengthWithPunctuation =
List.fold2
(fun acc (str: string) (punc:string) ->
acc + str.Length + punc.Length)
0
strings
punctuation; ;

val totalLengthWithPunctuation : int = 44

Here, the sentence punctuation has been kept in a separate list. To get a full count of the number of
characters, fo1d2 is used to thread an accumulator over both lists at the same time and add up the
total length of the strings inside.

Because the accumulator need not be the same type as the contents of the collection, fold ends up
being one of the most dynamic list processing constructs. In fact, almost any other function on a
list can be written in terms of fold or foldBack. This includes filter, map, and reduce. For exam-
ple, to implement map you simply make the accumulator the same type as the collection and build up
your result as you walk across the collection.

scan

Much like fold is an extension of reduce, scan is an extension of fold. While fold returns only
the result of the final computation, scan returns a collection of all intermediate results. In this way,
scan is like a combination of fold and map.

Application of scan is exactly the same as fold: you pass it a collection, a scanning function, and
an initial accumulator value. The scanning function takes an element of that collection and the pre-
vious accumulator, returning the next accumulator value. Each element is visited once, and the given

Summary [X267

function is applied to the current element and the accumulator. When finished, a collection of all
accumulator values is returned.

> let wordOffset =
List.scan
(fun acc (str: string) -> acc + str.Length)
0
strings;;

val wordOffset : int list = [0; 3; 8; 13; 16; 21; 25; 28; 32; 35]

By applying the same function as used in the previous fold example, you can create an offset index
were the strings to be concatenated. The only difference in this case is that scan returns each inter-
mediate value of the accumulator instead of just the final one.

Like most other accumulator based functions, scan also has a right-to-left version named scanBack.

> let backwardWordOffset =
List.scanBack
(fun (str: string) acc -> acc + str.Length)
strings
0;;

val backwardWordOffset : int list = [35; 32; 27; 22; 19; 14; 10; 7; 3; 0]

Here the same function is applied, and we instead get the distance of each word from the end of the
sentence. Note that just like in other right-to-left accumulator functions, both the scanning func-
tion and scanBack take arguments in reverse order.

SUMMARY

Getting the hang of F#’s vast array of list processing functions may seem an overwhelming task.
Fortunately, most are just variations on the same few ideas. A good place to start is with just filter,
map, and fold. If you can get to the point of applying just these three functions with confidence, the
rest will come easily when needed.

If while reading this you were thinking some of the more complex functions, such as scan, might
not be all that useful you probably would be correct. It is always best to use the least complex
construct possible. This means fold should be favored over scan and filter, reduce or map over
fold. However, for calculating prior-dependant transformations of sequences, complex functions
such as scan are fantastic tools to have.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

17

Pipelining and Composition

WHAT'’S IN THIS CHAPTER?

Understanding pipelining operators
Understanding composition operators

Getting started with pipelining function composition

@ © o ©

Using advanced function composition

What is it about functional languages that make them so powerful for data structure process-
ing? One answer to this is composability. Instead of being a built-in language construct such
as for or foreach, functional abstractions like map and reduce are themselves functions.
They are first-class language citizens, no different than any function you might write yourself.
This means that they are much more flexible because they can be built one argument at a time,
passed around, and even combined with other functions.

Out of this composability comes a data-oriented programming technique called pipelining.
In pipelining, functions are combined or chained together with special operators. This allows
you to pass the results of one function directly and unambiguously into the next. In this way,
programs can be constructed as a series of discrete data transformations. As you will see, this
approach produces short and expressive data processing programs.

BASIC COMPOSITION AND PIPELINING

When writing code using composition and pipelining, there are four primary operators. Each
of these is a combination of two ideas, performing an operation to the left or right and either
pipelining data or composing functions. When combined, they provide a powerful set of tools
that allow you to write concise and visually appealing code.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

270

[XEHAPTER 17 PIPELINING AND COMPOSITION

Pipelining

When pipelining, the result of each function call is passed directly into the next. Data passes
through this series of pipes undergoing conversions, filters, and normalizations. Eventually, when
the data reaches the other side, you have the results you need as explained by a simple set of steps.

Although programming in this style has long been considered controversial in imperative-object
oriented programming languages, functional languages provide you with the tools to do this in
a safe and readable way. The end result is very concise and easy-to-maintain code. LINQ is a
great example of this. Although initially designed to facilitate SQL-style querying, it also can be
extended quite dramatically for declarative and transformation based programming in C# and
VB.NET. However, even what LINQ offers can’t come close to the flexibility provided by native
functional composition.

Forward Pipe (>)

The forward pipe operator is used to pass arguments to a function from the left side or the previous
line. For example, given a data set like the following;:

type Place = { Name: string; Population: int }

let places = [{ Name = "New York"; Population = 9000000; }
{ Name = "Los Angeles"; Population = 4000000; }
{ Name = "Frankfurt"; Population = 700000; }
{ Name = "Tokyo"; Population = 13000000;}]

It’s a simple matter to build a query that finds the cities with a population more than § million and
then normalize the names of those cities by converting them to uppercase.

> let overb5MilUppercase =
places
|> List.filter (fun p -> p.Population > 5000000)
|> List.map (fun p -> p.Name.ToUpper ());;

val overS5MilUppercase : string list = ["NEW YORK"; "TOKYO"]

Don’t let the fact that operators look like pure syntax fool you; just like most other constructs in F#,
under the hood they are functions. This becomes obvious if we inspect the operator in the F# inter-
active window.

> (|>);;
val it : ('a -> ('a -> 'b) -> 'b) = <fun:ite@l>
The only difference between this and a normal function is that binary operators (operators that

take two arguments) pull arguments from their left and right sides and are evaluated with low
precedence.

Looking at the type signature, you can see it’s not all that complicated. On the left side it takes a
value of one type ('a) and on the right a function ('a -> 'b). It then returns a value of the same

Basic Composition and Pipelining [X271

type as its function argument (‘b). The passed in function is used to convert the input type into the
output type. Were we to write this function ourselves, it would look like the following:

> let pf input func = func(input);;
val pf : 'a -> ('a -> 'b) -> 'b
> (pf);;

val it : ('a -> ('a -> 'b) -> 'b) = <fun:clo@3>

So, in the preceding example, places is on the left side of the first pipe operator and so corresponds
to the first ('a) in the function type signature. On the right side something slightly more complex

is going on; filter is first evaluated with only one of its arguments using a language feature called
partial application. This feature is discussed thoroughly in Chapter 13.

> List.filter (fun p -> p.Population > 5000000);;

val it : (Place list -> Place list) = <fun:it@4-13>

The partially applied representation of filter takes a Place 1list and returns a Place list,
fitting nicely into the right side ('a -> 'b) of the forward pipe operator’s type signature. The
operator grabs this partially applied filter function from its right side and applies the places value
to it from the ('a). Just as if the filter had been called directly with the list of places, another list is
returned ('b).

> places
|> List.filter (fun p -> p.Population > 5000000);;

val it : Place list = [{Name = "New York"; Population = 9000000;};
{Name = "Tokyo"; Population = 13000000;}]

This same process is repeated each time the pipe operator is used. On the next line, the newly fil-
tered list of places is taken from the right and a partially applied map is taken from the right. The
result of applying this list of places to the mapping function is then returned.

That’s it. The forward pipe operator simply changes the order you specify function and argument. The
secret is in that the operator takes the value first (from its left side) and the function second (from its
right). This allows the result of the previous line to be applied to a function on the current line.

This operator is one of the most commonly used in F#. As the F# compiler is single pass, having the
primary argument on the previous line also means that its type can be evaluated before the function
it is applied to. This greatly improves type inference and so eliminates the need for type annotations
in many cases.

Backward Pipe (<I)

The backward pipe operator is used to pass arguments in to a function from the right side or next
line. It is much the same as forward, except that the order of its arguments is reversed. It takes
input on its right side and applies it to a function on its left.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

272 [XCHAPTER17 PIPELINING AND COMPOSITION

Take a look at the example where the cities were filtered to populations under five million and then
converted to uppercase using the backward pipe operator.

> let overb5MilUppercase =
List.map (fun (p: Place) -> p.Name.ToUpper ()
<| (List.filter (fun (p: Place) -> p.Population > 5000000)
<| places);;

val over5SMilUppercase : string list = ["NEW YORK"; "TOKYO"]

Here, the list of places is backward piped into the filter function. In turn, the result of that is then
backward piped into map. The primary difference here, other than the reversed ordering, is that
additional parentheses are needed to ensure correct order of operation. This is because F# evaluates
everything with the same precedence in the function contents from top to bottom and left to right.
Without the parentheses, the compiler would try to pipe filter directly into the partially applied map
function on the previous line and compilation would fail.

Under the hood, the backward pipe operator’s underlying function is exactly the same as the
forward operator, except the order of arguments is reversed.

> (<|);;
val it : (('a -> 'b) -> 'a -> 'b) = <fun:it@5-2>
> let pb func input = func(input);;
val pb : ('a -> 'b) -> 'a -> 'b
> (pb);;
val it : (('a -> 'b) -> 'a -> 'b) = <fun:clo@7-3>
Here you see ('a -> 'b) corresponding to the function taken from the left, 'a corresponding to

the value taken from the right, and 'b corresponding to the result. The ('a ->'b) function is used
to convert 'a into 'b.

Although it is much less commonly used than the forward pipelining operator for line displacement,
the backward pipelining operator is often used for avoiding parentheses around subexpressions on
the same line.

Seg.map (fun x -> x * 2) (Seqg.init 10 (fun 1 -> 1 * 2))

Seg.map (fun x -> x * 2) <| Seqg.init 10 (fun 1 -> 1 * 2)

Both of these examples are equivalent. However, the second is arguably more readable because it has
fewer parentheses. This improvement in readability can be particularly great in cases where many
small operations are performed on the same line to fill the arguments of a function.

Composition

Consider the case where you would want to apply a series of operations to a data set. In object-
oriented languages, you might build a series of classes based on an interface, or functions that match

Basic Composition and Pipelining [X273

some delegate, and then add them to a generic collection defined to take their shared underlying
type. You could then loop over this collection, applying each of these transformations to the result
of the previous in turn.

The great benefit in this approach is that a series of operations can be defined dynamically at runtime.
However, this methodology has a serious limitation. With this approach, each transformation must
take and return the same type. A single change in type means that the processing class or delegate
can’t be added to your collection.

Another approach might be to perform operations as you previously saw with pipelining. The result
of each function call is passed directly into the next, which eventually ends up providing you with
the result you need. The equivalent to this in object-oriented languages would be chaining the result
of many static method calls.

With this approach, you’ve solved the problem of composing operations of different types. However,
as each pipelining step or static method call is compiled into place and can’t be changed, you’ve
given up the ability to define which operations are used at runtime.

In F#, you can have both of these properties through a feature known as function composition.
The composition operators allow you to combine any two functions with compatible type signa-
tures into one without executing either. Among many other things, this allows you to both build
up a large collection of data transforming functions at runtime and use many different interme-
diate types.

Forward Composition (>>)

The forward composition operator takes two functions and composes them into a single function in
which the left is applied to the input first and then the right is applied to the result of that. Although
simple conceptually, this operator can profoundly change what your code can do.

Take a look at how forward composition can be used in the example from forward pipelining.
> let findNamesOfPlacesOver5MilInUppercase =
List.filter (fun p -> p.Population > 5000000)
>> List.map (fun p -> p.Name.ToUpper());;
val findNamesOfPlacesOver5MilInUppercase : (Place list -> string list)
> findNamesOfPlacesOver5MilInUppercase places;;

val it : string list = ["NEW YORK"; "TOKYO"]

Taking a deeper look at the actual composition, you see the partially applied filter and map
functions are combined into a single function that takes the type of the first function as input and
returns the type of the second.

> List.filter (fun p -> p.Population > 5000000);;
val it : (Place list -> Place list) = <fun:it@16-8>
> List.map (fun p -> p.Name.ToUpper());;

val it : (Place list -> string list) = <fun:it@17-10>

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

274 [XCHAPTER17 PIPELINING AND COMPOSITION

> List.filter (fun p -> p.Population > 5000000)
>> List.map (fun p -> p.Name.ToUpper());;

val it : (Place list -> string list) = <fun:1t@18-15>

Although powerful, the forward composition operator is actually just a simple function under the

hood.

> (>>);;
val it : (('a -> 'b) -> ('b -> '¢) -> 'a -> 'c) = <fun:1t@26-16>

The forward composition operator takes one function on the left of type ('a -> 'b) and another
on the right of ('b -> 'c). It then returns another function ('a -> 'c) that takes the same type
as the first function but returns the same type as the second.

> let fc funl fun2 input = fun2(funl(input));;

val fc : ('a -> 'b) -> ('b -> '¢c) -> 'a -> 'c

> (fe)i;

val it : (('a -> 'b) -> ('b -> '¢) -> 'a -> 'c) = <fun:clo@28>

Internally, these two functions are combined by simply calling one inside the other. When the opera-
tor is used, the argument functions are partially applied but the input variable remains free. This
allows the resulting function to be called with the expected input type at any later time.

Backward Composition (<<)

The backward composition operator takes two functions and composes them into a single func-
tion in which the right is first applied to the input and then the left is applied to the result of that.
As you might have expected, this is exactly the same as forward composition except with reversed
arguments.

Take a look at how the backward composition operator can be used to make a functionally equiva-
lent example to one shown in forward pipelining.

> let findNamesOfPlacesOver5MilInUppercase =
List.map (fun (p: Place) -> p.Name.ToUpper())
<< List.filter (fun (p: Place) -> p.Population > 5000000);;
val findNamesOfPlacesOver5MilInUppercase : (Place list -> string list)

> findNamesOfPlacesOver5MilInUppercase places;;

val it : string list = ["NEW YORK"; "TOKYO"]

Applying Pipelining and Composition [X275

The partially applied filter and map functions are composed together. This is just as in the ver-
sion from forward composition, except the argument ordering is reversed. The list of places is then
passed in to this composed function and the result is returned.

As you might have suspected, the backward composition operator’s signature is the same as the for-
ward version except with reversed arguments.

> (<<);;

val it : (('a -> 'b) -> ('c -> 'a) -> 'c -> 'b) = <fun:it@7>

Just the opposite of forward composition, the left side takes a function on the left of type ('a -> 'b)
and on the right of ('c -> 'a). These are combined to form a new function of type ('c -> 'b)

where 'c is the input type of the function on the right side, and 'b the output type of the function on
the left.

> let fb funl fun2 input = funl(fun2(input));;
val fb : ('a -> 'b) -> ('c -> 'a) -> '¢ -> 'b
> (fb);;

val it : (('a -> 'b) -> ('c -> 'a) -> 'c -> 'b) = <fun:clo@9>

This is done in exactly the same way as with forward composition. The input functions on the left
and right are partially applied to the operator’s internal function, which is then returned. When
evaluated, the input will first be applied to the function taken from the right and then the result of
that will be applied to the function from the left.

APPLYING PIPELINING AND COMPOSITION

The most important thing to keep in mind when building data pipelines is the input and output
types of the functions involved. When data is pipelined into a function, that data must have the
same signature as that function expects. Similarly, when composing two functions, the output type
of the first function must match the input type of the second.

If you understand the C# or VB.NET type system, this should make perfect sense to you. You can’t
fit a square peg into a round hole, as they say. However, unlike in other .NET languages, F# will
never automatically convert your data to a different type. This applies even to classes written in
other languages. Both the upcasting and downcasting of class instances must always be explicitly
stated. In addition, the different numeric types such as int and float must be explicitly converted
to each other. Keeping this in mind is useful when writing any programs in F# but particularly
important when using composition and pipelining.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

276

[XEHAPTER 17 PIPELINING AND COMPOSITION

From Loops to Pipelining

J

Coming from the imperative programming world, it takes some change in perspective to move from
thinking in terms of mutations in a loop to transformations in a function pipeline. The shift in per-

spective is one of focusing on what you want done in discrete steps instead of how you want to do it
all at the same time.

Take a look at this simple example where you are trying to decide among several vacation spots.

type VacationLocation =
{ Name: string; Pop: int; Density: int; Nightlife: int }

Availablefor 7o gestinations =
download on i i '
Wrox.com [{ Name = "New York"; Pop = 9000000; Density = 27000; Nightlife = 9 }

J

{ Name = "Munich"; Pop = 1300000; Density = 4300; Nightlife = 7 }
{ Name = "Tokyo"; Pop = 13000000; Density = 15000; Nightlife = 3 }
{ Name = "Rome"; Pop = 2700000; Density = 5500; Nightlife = 5 }]

let findVacationImperitive data =
let mutable outputList = []
for i = List.length data - 1 downto 0 do
let current = data.[1]
let size = current.Pop / current.Density
if current.Nightlife >= 5 &&
size >= 200 &&
current.Density <= 8000
then
outputList <- List.Cons(current.Name, outputList)
outputList;;

Code snippet FindVacationImperitive.fs

> findVacationImperitive destinations;;
val it : string list = ["Munich"; "Rome"]

In this imperative version, the data set is passed in, and if it passes a set of predicates, the name
value of the record is added to a list. There’s a lot going on here that you shouldn’t need to think
about. First, you need to explicitly build and maintain a data structure to store data in. Second,
program flow must be explicitly controlled via a backward loop and an i f statement. Third, all this
logic is tangled together and difficult to extract in a meaningful way. If all you want to do is find the
name of a city that meets some criteria, why must the movement of every chunk of data be explicitly
stated? It ends up being a tangled mess.

This example is much clearer when pipelining is used. To convert to pipelining, each of the predi-
cates in the if statement is changed into a filter statement. After being filtered we perform the
conversion to just the city name with a map. Everything else in the example can be thrown away.

let findVacationPipeline data =

data
Available for |> List.filter (fun x -> x.Nightlife >= 5)
download on |> List.filter (fun x -> x.Pop / x.Density >= 200)

Wrox.com

Applying Pipelining and Composition [X277

|> List.filter (fun x -> x.Density <= 8000)
|> List.map (fun x -> x.Name);;

Code snippet FindVacationPipeline.fs

> findVacationPipeline destinations;;

val it : string list = ["Munich"; "Rome"]

The collection of records is simply passed through a series of filters and converted to an output
format. Each step is explicit about the action it performs and can be changed or removed easily.

The programmer need not spend much time thinking about exactly how each of these steps is
being done.

From Pipelining to Composition

Now, what if you were building this into a website that can help millions of people find the best

vacation destination? One flexible way to approach this would be to dynamically build a set of
filter functions defined by values given by the user.

> let getSimpleVacationPipeline nightlifeMin sizeMin densityMax =
List.filter (fun x -> x.Nightlife >= nightlifeMin)
>> List.filter (fun x -> x.Pop / xX.Density >= sizeMin)
>> List.filter (fun x -> x.Density <= densityMax);;

val getSimpleVacationPipeline

int -> int -> int -> (VacationLocation list -> VacationLocation list)

You can just call the getSimplevacationPipeline function with the values for each of the given
filters. When called, the lambda expressions given for each filter acts as a closure over the parameter
value it uses. These filter functions are then composed into a single function that is returned. You
can take this composite filter function and use it to perform your filtering step at a later time.

> let myPipeline = getSimpleVacationPipeline 5 200 8000;;

val myPipeline : (VacationLocation list -> VacationLocation list)

> let applyVacationPipeline data filterPipeline =
data

|> filterPipeline
|> List.map (fun x -> x.Name);;

val applyVacationPipeline
'a -> ('a -> VacationLocation list) -> string list

> applyVacationPipeline destinations myPipeline;;
val it : string list = ["Munich"; "Rome"]

In this example, myPipeline is the composite filter function returned by the call to
getSimpleVacationPipeline. This composite filter is then passed into the applyVacationPipeline

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

278 [XCHAPTER17 PIPELINING AND COMPOSITION

function along with the data set. This function pushes the data into the composite filter and then
performs the same simple map as was used in the pure pipelining example.

Advanced Composition

Although interesting, the static set of filters in the previous example is insufficient for our use case.
Any reasonable web interface would allow the user to toggle filters on and off. To gain the needed

functionality, you need to go one step further and leverage a combination of option types and the
identity function.

The option type has been discussed in Chapter 15, “Data Types.” It simply provides a way to say a
value may or may not exist. It’s quite like the idea of nu11, but much safer. The identity function
is similarly quite simple. It’s just a predefined function that takes a value and immediately returns
it. Consider it as a kind of a no-op used to make the dynamic gluing of transformation functions a
smoother process. In F#, the identity function is given the name id.

By making each argument to your pipeline building function an option type, you can specify if
each corresponding function should be added to the filter pipeline by simply selecting if the input
value is some value or none.

> let getVacationPipeline nightlifeMin sizeMin densityMax searchName =
match nightlifeMin with
N | Some (n) -> List.filter (fun x -> x.Nightlife >= n)
Available for .
download on | None -> id
Wrox.com >> match sizeMin with

| Some(s) -> List.filter (fun x -> x.Pop / x.Density >= s)
| None -> id
>> match densityMax with
| Some(d) -> List.filter (fun x -> x.Density <= d)
| None -> id
>> match searchName with
| Some(sn) -> List.filter (fun x -> x.Name.Contains(sn))
| None -> id;;

Code snippet GetVacationPipeline.fs

val getVacationPipeline
int option ->
int option ->
int option ->
string option -> (VacationLocation list -> VacationLocation list)

Now that each of the input arguments is an option type, we can specify them as Some or None to
toggle each filter on or off. When a value is passed in as None, the identity function is returned
instead of a filter. Notice that a new name searching filter was added in this example as a place
to demonstrate passing in none.

Applying Pipelining and Composition [X279

> let myPipeline = getVacationPipeline (Some 5) (Some 200) (Some 8000) None;;
val myPipeline : (VacationLocation list -> VacationLocation list)
> applyVacationPipeline destinations myPipeline;;

val it : string list = ["Munich"; "Rome"]

So, as values were passed in for the first three filters, they were each included in the composition.
The name searching filter was left out as None was passed in for its parameter. The result is a
filter exactly the same as the previous example but composed based on the availability of input.

You might have noticed that this version of getvacationPipeline was already a bit large and had
a significant amount of repeated code. As a final step, the repeated code can be factored out in to a
single function. This step is rather advanced but will make adding new filters in the future much easier.

let getFilter filter some =
S match some with

Auailable for | Some(v) -> List.filter (filter v)

Wrox.com | None -> id
getFilter (fun nlMax x -> x.Nightlife >= nlMax) nightlifeMin
>> getFilter (fun sMax x -> x.Pop / x.Density >= sMax) sizeMin
>> getFilter (fun dMin x -> x.Density < dMin) densityMax
>> getFilter (fun sName x -> x.Name.Contains (sName)) searchName; ;

! > let getVacationPipeline nightlifeMin sizeMin densityMax searchName =

Code snippet GetVacationPipelineRefactored.fs

val getVacationPipeline
int option ->
int option ->
int option ->
string option -> (VacationLocation list -> VacationLocation list)

In this example, all the repeated code has been refactored into one function named getFilter. This
function takes a filtering function of two arguments and an option type. The new argument to each
of the filter functions is a place where the value of the option type will be filled in if it exists. You
can see this step inside getFilter as (filter v). After the missing value is filled in, the filter
function is passed as an argument to List.filter. Just as in each example leading up to this, the
partially composed List.filter is returned and combined with its neighbors via the function com-
position operator.

Although succinct and usable, the example is by no means as far as this can be taken in F#. You
might imagine representing a set of possible filters as a list and their corresponding optional inputs
as another. These lists could be folded over with the forward composition operator and a function
similar to getFilter. However, that is only one of many possible directions to take this. When
functions are just another type of data, the possibilities are virtually limitless.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

280 [XCHAPTER17 PIPELINING AND COMPOSITION

SUMMARY

The ability to treat functions as data, when combined with F#’s large library of data manipulation
constructs, gives you a language in which you can build very powerful data manipulation pro-
grams but which are also short and easy to read. This is one of F#’s core strengths. To leverage this
strength you first need to understand the composition and pipelining operations well. Next, spend
time playing with the various list manipulation functions. In very little time, you’ll gain full enough
intuition to build composition helper functions and possibly your own data structures. The key to
this is practice.

PART IV
Applications

» CHAPTER 18: C#

» CHAPTER 19: Databases

» CHAPTER 20: XML

» CHAPTER 21: ASP.NET MVC
» CHAPTER 22: Silverlight

» CHAPTER 23: Services

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

18

C#

WHAT'’S IN THIS CHAPTER?

Calling C# libraries from F#
Exploring the complexities of C# libraries
Calling F# libraries from C#

Structuring F# libraries for C# consumption

@ © 6 o6 ©

Avoiding common pitfalls

While F# is definitely useful on its own, if it were unable to leverage programs written in other
languages such as C#, it would be far less practical for general use than it could be. And C#
programs greatly benefit from using new F# programs. This chapter explains how these two
languages can interoperate together and provides some tips to make that interoperation easier.

OVERVIEW

One of the most significant reasons why F# is a compelling functional language is that it is
best positioned for broad usage among software developers on the .NET platform. It isn’t the
only functional language in that it not only can leverage the .NET framework but there are
also many others — including implementations of Clojure and Scheme. What sets F# apart is
not only “inclusion in the box” as part of Visual Studio, but also the downstream implications
of that, meaning it will be available to a broader pool of developers, which leads to broader
skill availability, which helps build a talent base that makes organizations more likely to con-
sider using the language.

Of course, none of this would be possible if these more risk-averse organizations could leverage
existing investments in C# in their F# programs. Although it would be nice to live in an “ideal
programmer world” where one picks and chooses the legacy code base one gets to program

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

284 [XCHAPTER18 C#

to, reality is that no language will ever get significant usage if it can’t build on work that has already
been done.

CALLING C# LIBRARIES FROM F#

Given a great deal of the code written on the .NET platform is written in C#, it would be almost
impossible to write a meaningful F# program without calling C# code at some point. This section

covers the simple cases, and more interestingly, some of the more complex cases that tend to be hard
to handle from the F# side.

Simple Method Calling Scenarios

The vast majority of F# to C# integration scenarios is intuitive. Consider the following somewhat
trivial C# class:

‘) namespace CSharpLibrary
{

Available for public class CSharpLibraryUsedWithFSharp
download on {
Wrox.com

public int SomeMutableProperty { get; set; }
public int AnotherMutableProperty { get; set; }

public CSharpLibraryUsedWithFSharp ()
{

}
public bool SomeFunction(int firstParam, int secondParam)

{

return true;

Code snippet CSharpLibraryUsedWithFSharp.cs

If this class is in a project called cSharpLibrary that compiles to a class library, after referencing
the library from your F# project, the following could be written to call SomeFunction:

‘) module FSharpCallingCSharp
open System

Available for open CSharpLibrary

dmg;“ggl:" //typical call to C#
let newCSharpObject = new CSharpLibraryUsedwWithFSharp ()
let someResult = newCSharpObject.SomeFunction (42,69)

Code snippet FSharpCallingCSharp.fs

Calling C# Libraries from F# [X285

The semantics of dealing with C# objects in F# is not all that different from how you would deal
with dealing with C# objects in C#. The last two lines in C# barely look any different at all:

var newCSharpObject = new CSharpLibraryUsedWithFSharp() ;
var someResult = newCSharpObject.SomeFunction(42,69);

At this level, moving from C# to F# is a simple matter of replacing var with 1let and removing the
semicolons. You might wonder what all the fuss is about! As might be expected, however, there is
much more just a little bit behind the scenes. This gets put into sharp relief when attempting to call
C# methods using F# pipeline syntax:

‘) //this works
let anotherResult = (42,69) |> newCSharpObject.SomeFunction
Available for //but you can't do this stuff
d&ﬁgyig;" let wontWork = newCSharpObject.SomeFunction 42 69
’ let alsoWontWork = 69 |> 42 |> newCSharpObject.SomeFunction
let neitherWillThisAttemptedCurryingExample = 69 |> newCSharpObject.SomeFunction

Code snippet FSharpCallingCSharp.fs

What becomes more clear when looking at this in pipeline form is that from F#, a method with
multiple parameters is actually a method with a single parameter that is presented from F# in
the form of a tuple. As a result of this, when using C# functions in F#, the same options around
function composition will generally not be available. Consider the following common F# curry-
ing example:

let someFSharpFunction a b = a + b

let curriedFunction = 42 |> someFSharpFunction
let actualResult = 69 |> curriedFunction

Although the preceding is a simple exercise in F#, doing so with methods defined in C# is not pos-
sible in a way that most people would consider elegant, if it is possible at all.

C# Object Construction

Constructing C# objects in F# is mostly trivial:

let newCSharpObject = new CSharpLibraryUsedWithFSharp ()

The new facility in F# works mostly how a C# developer would expect it would. Construction with
arguments takes the familiar form as well:

let paramsOnly = new CSharpLibraryUsedWithFSharp(11,22)

In C# 3.0, a new feature, object initializers, were introduced, which allow for provision of the initial
property values of (usually) mutable properties. Property initialization in F# is not all that different:

let initializersOnly =
new CSharpLibraryUsedWithFSharp (
SomeMutableProperty = 55,
AnotherMutableProperty = 56)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

286 [XCHAPTER18 C#

The key difference on the F# side is that parentheses are used, not braces, as you would in C#. If you
want to mix explicit constructor parameters with property initializers, the explicit parameters come
first:

let paramsAndInitializers =
new CSharpLibraryUsedWithFSharp (
11,
22,
SomeMutableProperty = 55,
AnotherMutableProperty = 56)

F#, C#, and null

Idiomatic F# code avoids the use of nu11 as much as possible, in favor of option types for situations
where the goal is to express lack of a value. However, there are situations where you may be calling
C# code that does, in fact, need to provide a proper C# style null parameter:

//this works

let shouldBeTrue = String.IsNullOrEmpty (null)
//this does not work

let doesNotCompile = String.IsNullOrEmpty (None)

It is important to note that in the world of F#, nulls are to be avoided most of the time. When call-
ing C# code that might return a nul1l, it is often far safer to check for that condition and contain it
at the source of the issue, like this:

‘) //pretend this is your normal null spewing C# function
let someRandomStrangeFunctionThatMightReturnNull =
Available for match DateTime.Now.Day with
download on _s nmhA : : : "
Wrox.com } 31 -> T?ls is a 31st Day in a 31 Day Month, Yipee
_ —> nu

//this is how you will protect against such functions in your F# code
let wontBeNull =
match someRandomStrangeFunctionThatMightReturnNull with
| null -> None
| v -> Some(v)

Code snippet FSharpCallingCSharp.fs

In the preceding example, someRandomStrangeFunctionThatMightReturnNull represents a proto-
typical C# function that breaks out F# rules about avoiding nulls. This function is not idiomatic F#
but helps us illustrate what C# programs sometimes return to us. The wontBeNu11 value calls that
function but does so in a match statement, which converts the null to a None if nul1l is returned,
otherwise, producing a some with the embedded value if such a value exists. This pattern should be
used around calls to non F# libraries, including C# programs, that either:

Q. Are known to return null in certain cases

b. Are from an outside API that might return null — or is unknown about its status as to
whether null is returned

Calling C# Libraries from F# [X287

A savvy C# programmer may notice that an option with a simple type, such as Some (42), is
actually similar to a Nullable<int> in C#. In fact, they are similar in some ways. However, in
F#, some (x) allows x to be any type of object, which allows a programmer to not only be more
explicit when stating intent for “lack of an object,” but also allows generic functions that deal
with both nonobjects and objects to consistently use the same kind of structure to differentiate
between Some (T) and None.

F# and C# Methods that Expect Delegates

Calling C# methods that expect delegate parameters, although not hard, is also not entirely obvi-
ous. There is no automatic conversion from an F# function to a particular delegate signature in C#.
Consider the following C# code:

\) public class CSharpLibraryUsedwWithFSharp

{
Available for public int SomeMutableProperty { get; set; }
download on

Wrox.com public int AnotherMutableProperty { get; set; }

public delegate int BinaryIntegerMathOp (int opl, int op2);

public CSharpLibraryUsedWithFSharp ()
{

}

public int PerformMathOnMyProperties (BinaryIntegerMathOp
op)
{
return op(SomeMutableProperty, AnotherMutableProperty) ;

Code snippet CSharpLibraryUsedWithFSharp.cs

A delegate type has been declared called BinaryTntegerMathop, which takes two integers and
converts them into a single integer. The method PerformaAMathOperationOnMyProperties takes a
BinaryIntegerMathOp as a parameter and returns the result of the operation.

The following is a way a C# programmer would likely first approach the problem when using F#:

‘) let delegateExample = new CSharpLibraryUsedWithFSharp (
SomeMutableProperty = 55,

Available for AnotherMutableProperty = 56)

download on

let addNumbersAsDelegate =
new CSharpLibraryUsedWithFSharp.BinaryIntegerMathOp (
fun x v -> x + vy
)
let subNumbersAsDelegate =
new CSharpLibraryUsedWithFSharp.BinaryIntegerMathOp (
fun xy > x -y
)
let shouldBelll =

Wrox.com

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

288 [XCHAPTER18 C#

delegateExample.PerformMathOnMyProperties (addNumbersAsDelegate)
let shouldBeMinusOne =
delegateExample.PerformMathOnMyProperties (subNumbersAsDelegate)

Code snippet FSharpCallingCSharp.fs

In this example, specific delegate types are declared and used. This kind of convention may be
needed in cases where a method has multiple overloads that take delegates that have the same
parameters and return types, to disambiguate which method is to be called. However, if that is not
the case, the following simpler and more F# idiomatic syntax may be used:
let simplerForm
= delegateExample.PerformMathOnMyProperties (fun x y -> x+ y)

let subSimplerForm
= delegateExample.PerformMathOnMyProperties(fun x y -> x - vy)

F# and C# Events

Working with events in C# classes is fairly straightforward. Consider the following class that pub-
lishes an event:

‘) public class CSharpLibraryUsedWithFSharp

{
Available for public delegate void BeerFinishingHandler (string nameOfBeer) ;
download on

public event BeerFinishingHandler FinishedABeer;
Wrox.com
public void HaveADrinkingBinge ()
{
if (FinishedABeer != null)
{
FinishedABeer ("Belgian Trappist");
FinishedABeer ("Three Philosophers");
FinishedABeer ("Red Hook");
FinishedABeer ("Stella");
FinishedABeer ("Another Stella");
//as time goes by, standards get lower
FinishedABeer ("Pabst Blue Ribbon") ;
FinishedABeer ("Schlitz");
//throw a type mismatch exception?
FinishedABeer ("Zima") ;

Code snippet CSharpLibraryUsedWithFSharp.cs

In F#, subscribing to events is not unlike one would do in C#, though the syntax is arguably a bit
cleaner:

let eventExample = new CSharpLibraryUsedWithFSharp ()
eventExample.add_FinishedABeer(fun s -> printfn "Drank a %s" s)
do eventExample.HaveADrinkingBinge ()

Calling F# Libraries from C# [X289

Subscribing to events is very similar to a typical case of delegate passing, as the preceding code demon-
strates with the call to add_FinishedaABeer. The method add_FinishedaBeer is automatically gener-
ated when C# has a public event, comparable to what the += event assignment operator does in C#.

Of course, there are times when you may want to unsubscribe to an event. At first glance, the
exposed method remove_FinishedaBeer looks promising:

//wont remove the event, since it is a different function instance
eventExample.remove_FinishedABeer(fun s -> printfn "Drank a %s" s)

The problem, of course, is that the remove method needs a means to know what it is remov-
ing, because there can be many subscribers to a given event. The preceding code won’t create

an exception, but because fun s -> printfn "Drank a %$s" s gets converted into a different
instance of the delegate than the one passed into the add_FinishedaBeer method we originally
called, it does nothing because the new delegate we create by passing a simple F# function won’t
be found.

To remove a subscription, we must keep a reference to the original delegate that was passed in to
handle the event:

‘) let anotherEventExample = new CSharpLibraryUsedWithFSharp ()
let handleMyBeer = new CSharpLibraryUsedWithFSharp.BeerFinishingHandler (
Available for fun s -> printfn "Drank a %s" s)

dmg;":grg" anotherEventExample.add_FinishedABeer (handleMyBeer)
’ //this remove will work, since it is the same delegate instance
anotherEventExample.remove_FinishedABeer (handleMyBeer)

Code snippet FSharpCallingCSharp.fs

In this example, an explicit reference to the delegate is created. This works because remove uses ref-
erence equality of the delegate to indicate which to remove. The same instance must be used in the
remove that was used in the corresponding add for the remove to actually work.

F# to C# Summary

Although F# calling C# is straightforward most of the time, there are some cases where it is not
exactly clear how the C# concept translates into F# code that may want to leverage the feature. This
is particularly true in areas such as passing around functions, delegates, dealing with events, and
dealing with concepts like null that are not mainstream F#. Things get more interesting, however,
when you switch to making use of F# libraries in C#.

CALLING F# LIBRARIES FROM C#

A very compelling use case for F#, as organizations start to adapt it, is to integrate specialized mod-
ules that do calculation and math that are written in F# into existing C# programs. For the most
part, using F# programs from C# code is simple. However, there are certain things that can be done
that make F# libraries easier for outside programs to understand, whether they are written in C#,
other CLR languages, or even other F# programs.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

290 [XCHAPTER18 C#

Basics of Calling F#

Much interaction that occurs when C# calls F# works exactly how you would expect it to. Consider
the following type definition in F#:

‘) namespace FSharpLibraryUsedWithCSharp
open System

Available for type FSharpLibrary() =

download on

Wrox.com

member this.MethodCallNoParameters() =
42
member this.NoParamsMakesAReadOnlyProperty =
"T am a property result"
member this.MethodCallWithParameters x y =
X +y
member this.MethodCallWithTupleFormParameters (x,y) =
x *y

Code snippet FSharpCallingCSharp.fs

The preceding type and function, as defined in F#, represents various ways that a given F# type may
define members. From the C# side, a call to MethodcallNoParameters will look as follows:

var someFSharpObject = new FSharpLibrary();
var simpleFunction = someFSharpObject.MethodCallNoParameters/() ;

The most significant thing to notice is that if the desired signature is to be a zero parameter
method, rather than as a property, an empty set of parentheses should be suffixed on the member
name in F#. Without the parentheses, the member will take the form of a read-only property:

var withoutParmsIAmAProperty = someFSharpObject.NoParamsMakesAReadOnlyProperty;

Calling members with parameters, whether those parameters are defined in F# in tuple form, oper-
ate like normal parameters in C#:

var withParameters = someFSharpObject.MethodCallWithParameters(1l, 2);
var withParametersTupleForm =
someFSharpObject.MethodCallWithTupleFormParameters (1, 2);

It is worth noting that even though internal to an F# program, tuple form would be passed to
MethodCallWithTupleFormParameters, doing so from a C# program does not work:

//worth mentioning that this does *not* compile
var passingATupleAsParameters
= someFSharpObject
.MethodCallWithTupleFormParameters (new Tuple<int, int>(1, 2));

F# Tuples in C# Programs

Although the practice of using Tuples as external return values in an external API is not recom-
mended, in the event that a Tuple is returned from a function in F# to a C# program, it will take

Calling F# Libraries from C# [X291

the form of a the new Tuple type in .NET 4.0. Consider the following F# member on the type
defined in the previous section:

member this.MemberThatReturnsATuple() =
("Aaron", "Erickson",37,new DateTime(2010,3,1))

From the point of view of a C# programmer, this member will return an object of type

Tuple<string, string, int, DateTime>.

var someTuple = someFSharpObject.MemberThatReturnsATuple() ;
var firstvValue = someTuple.Iteml;

var secondValue = someTuple.Item2;

var thirdvalue = someTuple.Item3;

var lastValue = someTuple.Item4;

Tuples are very useful, but from the standpoint of C# programs, they are not terribly descriptive,
especially outside the context of where they are used, as the names of the items of Item1, 2, 3, and
so forth do not really describe much.

Dealing with F# Records from C#

F# records generally come to C# as buckets that hold read-only properties. Consider the following sim-
ple record type defined in F#, and a member in FSharpLibrary that returns an instance of the record:

type PersonRecord = {FirstName:string;LastName:string;Age:int}

type FSharpLibrary() =
member this.MemberReturnsARecord() =
{FirstName="Aaron";LastName="Erickson";Age=37}

This is a common way for an F# program to return information to a C# program. This is especially

true in the sense that it is not as common for F# to deal in objects, and hence, something that would
be considered bad practice, the ever vilified “anemic domain” object, is just fine for moving informa-
tion over an integration seam such as an F# APIL.

From the perspective of C#, the code is hardly unusual:

var someRecord = someFSharpObject.MemberReturnsARecord() ;
var firstName = someRecord.FirstName;

var lastName = someRecord.LastName;

var age = someRecord.Age;

Each of the properties in the record type works as expected. As we would expect, the properties of
the F# object are immutable, just as they are on the F# side of the fence.

Creation of F# records from C# is simple as well:

//creation of a record (notice the generated ctor)
var aPerson = new PersonRecord("Matthew", "Erickson", 8);

It is notable that when F# compiles a record, it generates the appropriate constructor that does the
initial population of the immutable values within the record. Records, used in this way, are not bad

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

292 [XCHAPTER18 C#

things to pass through an API seam, especially for things that would take the role in C# of a data
transfer object.

Passing Functions to F# Functions

As understood from previous chapters where function composition is discussed, it is common for F#
programs to accept functions as parameters. Consider the following F# member:

member this.MemberThatTakesAFunction a b func =
func a b

This member is a simplistic member that applies func to a and b. Simple enough in F#, but this kind
of thing becomes painful to use from C#:

//calling a member that takes a function as a parameter
var uglyFunc = FuncConvert.ToFSharpFunc<int, FSharpFunc<int, int>>(
a => FuncConvert.ToFSharpFunc<int,int>(b => a + b)
)
var operationResult = someFSharpObject.MemberThatTakesAFunction (2, 2, uglyFunc);

In the preceding example, few would disagree that the preceding uglyFunc, is misnamed. Not only
does it require a reference to FSharp.Core to make the code at all (almost always a bad sign), but it
also forces construction of the function in an unintuitive manner. Although it does reveal how the
F# composes functions, there is no simple mapping from a more intuitive Func<int, int, int>
you would use in C# to the int->int->int that F# is expecting. As a result, it forces the program-
mer to go through the F# mechanics of composition in C#, and as a result, writing a lot of unidiom-
atic and confusing C# code in the process.

A better way to allow C# to pass functions to F# code is to use the Func<> or Action<> types, as
appropriate:

member this.IsBetterForCSharpInterop(a,b, func:Func<int, int,int>) =
func.Invoke(a, b)

which can be called from C# and other .NET languages more idiomatically:

var betterResult
= someFSharpObject.IsBetterForCSharpInterop(2, 2, (a, b) => a + b);

As a general rule, you should use natural F# functions when operating with other F# code, but when
designing an API that will likely be called from other CLR languages, use Func<> or Action<> with
those outside APIs.

Dealing with F# Discriminated Unions from C#

Discriminated unions, from the standpoint of the C# programmer, have the appearance of Enums,
but do not quite match up with them. As a result of this, it is not terribly common for F# program-
mers to expose discriminated unions in APIs. However, if an API returns such a discriminated
union, it is helpful to have a sense of what will happen. Consider the following;:

Calling F# Libraries from C# [X293

type CoolColors = Green | Blue | Purple

type FSharpLibrary() =
member this.ReturnADiscriminatedUnion() =
Blue

The preceding code is simple F# code that returns coolColors.Blue, which is part of the
CoolColors discriminated union. The following is perfectly good C# code that utilizes this:

var shouldBeBlue = someFSharpObject.ReturnADiscriminatedUnion() ;
var shouldBeTrue = shouldBeBlue == CoolColors.Blue;

As can be seen, it is almost like working with an enumeration. However, unlike an enumeration,
there is no ability to use the discriminated union in a switch statement, or do anything nearly as
powerful as an F# match construct. One of the reasons discriminated unions are not recommended
for use in APIs is that they tend to cause a number of ugly constructs in languages that are not
suited for using them, such as:

J if (shouldBeBlue == CoolColors.Blue)
{
Available for //do blue stuff
download on }
Wrox.com .
else if (shouldBeBlue == CoolColors.Green)

{
//do green stuff

}
else if (shouldBeBlue == CoolColors.Plaid)

{
//do crazy stuff

Code snippet CSharpLibraryUsedWithFSharp.cs

The preceding example is exactly the kind of C# code that most programmers want to get away
from, especially given that anything that is making a decision like that in C# code based on a dis-
criminated union could probably do so with much more clarity inside the F# library. Although it
may be necessary in a case where you deal with third-party libraries, it is generally better to deal
with discriminated unions in the world of F# rather than in C#.

Working with F# Option Types from C#

F# option types are another one of those cases that may sometimes leak outside of the F# world but
probably should remain in the F# world at least until there is a clean mapping in the CLR from F# to
the rest of the CLR languages. Consider an API written in F# containing something like the follow-
ing that uses an option int as a return value:

member this.ReturnAnOption() =
if DateTime.Now.Hour = 6 then
Some (6)
else
None

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

294 [XCHAPTER18 C#

The poor C# user who uses this API is going to need to not only reference FSharp.cCore (which has
the type definition for options), but will also need to do something like the following to convert the
option into a more appropriate type for C#:

//getting back an option
var mightHaveSomething = someFSharpObject.ReturnAnOption() ;
var someNullable =

mightHaveSomething == FSharpOption<int>.None

? new int?()

: mightHaveSomething.Value;

Of course, there are some key differences between Nullable and F# options. Nullable applies only
to structs, whereas FSharpOption applies to any kind of object. The FSharpoption is also more
explicit in that it can differentiate between a null object and None — though truth be told, in prac-
tice, most of the time null and None have the same semantic meaning from the perspective of the
C# programmer.

RULES OF THUMB FOR WRITING F# APIS

In this chapter so far, various means of dealing with what C# programmers might call “F# oddities”
have been covered. Over time, it is likely that many of these concepts from F# that are not easily
expressed in the CLR will find their way in, much like Tuple<T> has become a core part of the NET
framework. However, until something is in that core, it is far safer to write APIs that conform to
things that map easily to other languages as they are currently defined.

To help write APIs that will interoperate nicely with other languages, consider the following rules of
thumb:

©® Avoid using Tuple as return types from APIs. Even though the concepts are supported in C#
and other CLR languages in .NET 4.0, code that works with Tuple<T> is often hard to read
outside the context where the Tuple is defined.

® Avoid Fsharpoption unless you are confident your API consumer can take a dependency on
FSharp.Core. The FSharpOption<T> type is, arguably, a better Nullable than Nul1able,
something that can help C# programmers move away from using null as a sentinel value
meaning None. However, the drawback of forcing the direct dependency to FSharp.Core
is an important consideration, as is the complexity of dealing with a legacy codebase where
Nullable and FSharpOption might end up getting mixed together, creating even more con-
fusion than you started with.

©® Record types are all good — use them at will. F# Record types allow a programmer to do in
one line of F# code what often takes many lines of C#, expressing the concept of an immu-
table holder of data (that is, for transfer between systems) very cleanly.

© Avoid use of discriminated unions in public APIs. These are great for internal F# code, but to
C# code, the language constructs for dealing with them in a way idiomatic to good C# simply
are not present.

Summary [X295

© Do not use F# native functions as parameter types in public APIs. Prefer Func<> and
Action<> over native F# functions in APIs that pass functions around, as there is a great deal
of pain involved for languages other than F# to create proper F# functional constructs.

O Use each language for its purpose. For the same reason C# is likely better than F# for
expressing hardcore OO concepts, F# is better than C# for doing things like functional com-
position. Within those areas of strength, it is best to stick with the language at hand. Don’t
try to use F# to compose functions written in C#, and don’t try to use F# in some elaborate
C# inheritance chain. In an API where one interoperates with the other, select concepts that
are cleanly expressed in both languages when working over the seam.

SUMMARY

There are great reasons for being a polyglot — that is, proficient in multiple languages in a manner
that allows the programmer to use each language where it is best suited. Many enterprise solutions
have aspects that are best expressed in functions, such as business intelligence and complex calcu-
lations, where other aspects are best expressed in objects. By knowing not only how to use both
languages, but also how to use them together, the .NET programmer is well suited to not only get
the best of both worlds, but also to do so in a way that does not make both F# and C# code bases
difficult to maintain.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

19

Databases

WHAT'’S IN THIS CHAPTER?

Implementing basic CRUD operations
Understanding how ORMs and F# interact

o
o
® Creating your own mapping layer
o

Implementing DDL functionality

There are few, if any, interesting applications that do not use data in one way, shape, or form.
If we are to write interesting programs in F#, at some point, it is likely a database will be
involved. This chapter explains how databases can be accessed using F# and walks through an
example framework for dealing with data in F#.

OVERVIEW

One of the core strengths of F# is processing large sets of data and doing interesting things
with it. Most examples where F# was used early on were around things like computation of
XBox 360 TrueSkill (http:/blogs.technet.com/apg/archive/2008/06/16/trueskill-in-f.aspx).
This case, which involves taking a great deal of information gathered from players of Xbox
360 consoles and using said information to produce rankings that allow for smarter matching
of players when engaging in multiplayer games, is a canonical use case where F# shines. These
cases — where lots of incoming raw information can be processed by complex algorithms to
generate business value — are well suited to the F# language.

One thing you might start to notice are the similarities between some of the declarative
properties of F# and the declarative nature of the primary languages used for database inter-
action, Structured Query Language. For example, the select construct in SQL is quite simi-
lar to the seq.map construct in F#. The same can be said for (no pun intended) mapping the

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

298 [XCHAPTER19 DATABASES

concept of where to Seq. filter, and various other constructs based on seq. F#, when examined
closely, is ideally situated as a functional language that has all the power of what you would do
with SQL, with the added bonus that it is easily leveraged on the .NET framework. It allows sepa-
ration of code that works with data (using F#), from code that retrieves data (using SQL).

In this chapter, various ways to work with F# will be demonstrated. It covers core fundamentals
using core ADO.net libraries, what happens when you introduce an ORM into the mix, and then
explores some possibilities around more F#-friendly ways to work with data.

RETRIEVING DATA USING ADO.NET

There is little you can do without at least fundamentally getting some data in the first place.
Thankfully, there are a multitude of means by which you can retrieve data on the .NET framework.
The most fundamental way, however, is to simply use ADO.NET primitives to accomplish this task.
Assume the following exist:

® A local instance of Microsoft SQL Server 2008
O Integrated security, with the current user having administrative access to the local server

® A local database called DemoData

Creating a Database Connection

Under those assumptions, a database connection can be created with the following code:

module RawADOExample

open System.Data

tem.Data. 1Cli t
Available for open System.Data.Sg len

download on
Wrox.com //raw ADO example

let readPeople =
use connection =
new SglConnection (
"Server=1localhost;Integrated security=SSPI;database=DemoData")

Code snippet RawADOExample.fs

Most people familiar with other .NET languages will not find the preceding line of code that differ-
ent than a similar line of code in C# that accomplishes the same thing. Of course, it is important to

note that like many other objects that use external resources and implement IDisposable to have a
means to release said resources, it is important to use the use binding when instantiating them. This
is analogous to putting code in a using block in C#.

Creating connections to other data sources is a matter of finding other concrete classes that support
the IDbConnection interface, of which there are a robust number of options if you prefer to work
with something other than MS SQL Server.

Retrieving Data Using ADO.NET [X299

Reading Data

Of course, a connection alone is not going to do much all by itself. Performing a query requires a

command object that holds the query. The query itself is SQL code, which for this example, can be
used in string form:

module RawADOExample
\) open System.Data

open System.Data.SglClient
Available for

download on
Wrox.com //raw ADO example

let readPeople =
use connection = new SglConnection (

"Server=localhost;Integrated security=SSPI;database=DemoData")

use command = new SglCommand("select firstname, lastname from person",connection)

Code snippet RawADOExample.fs

Again, this is not that different than code you would write in any other .NET language for reaching
a database. Nothing really interesting has yet been done, however. If the desire is to retrieve some
actual data, then the command is going to need to be executed. If an assumption is made that the
firstname and lastname columns of the person table can be read as strings (that is, varchar, char,
or something like that), the following record type can be used as a container:

type Person = {Id:int;FirstName:string;LastName:string}

The next step is to actually run the query, take the results, and populate a list of Person records:

module RawADOExample
‘) open System.Data

open System.Data.SglClient
Available for
download on

Wrox.com type Person = {Id:int;FirstName:string;LastName:string}
//raw ADO example

let readPeople =
use connection =

new SglConnection("Server=localhost;Integrated security=SSPI;database=DemoData")
connection.Open()

use command = new SglCommand("select firstname,
use rawResult = command.ExecuteReader ()
let people = seqg {
while rawResult.Read() do
yvield {

Id = rawResult.["FirstName"] :?> int;

FirstName = rawResult.["FirstName"]

LastName = rawResult. ["LastName"]

}

lastname from person",connection)

:?> string;
:?> string

}
people |> Seq.toList

Code snippet RawADOExample.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

300 [XCHAPTER19 DATABASES

For those familiar with how ADO.NET works, this is a familiar pattern. A call to

command . ExecuteReader () is made, which provides a sglDataReader through which data can be
accessed. In the example, there is an F# spin on the old while-Read () -next loop. In this case, the
result is compiled into a sequence expression that specifies how the loop can be iterated through and
reads the results into Person records. It is important to note that, like all sequence definitions, nothing
has actually happened yet — this code merely specifies how the sequence is to be read. It does not actu-
ally read it until the next line, people |> Seq.toList, which iterates through the people sequence
and materializes an actual list of Person records.

Filtering Data

As simple as it may seem to simply do a Seq.filter operation on the result of selecting for all the
records in a given table at once, such operations do not scale for anything but very small data sets.
As a result, when working with larger databases, the need to let the database do some of the work of
filtering data right at the source will present itself. This is, of course, what databases do best, and it
would be pretty silly not to let the database help in the task of querying data.

For this sample, it is going to be assumed that the goal is to implement a query for people based on
the FirstName column in the database. Such code needs to add a parameter object into the query
that specifies which first name is to be queried for:

let retrievePeopleNamed firstName =
‘) use connection =
Available | new SglConnection("Server=localhost;Integrated security=SSPI;database=DemoData")
vailable for

download on connection.Open ()
Wrox.com use command =
new SglCommand("select firstname, lastname from person where firstname =
@firstname", connection)

let parameter = new SglParameter ("firstName", firstName)

do command.Parameters.Add parameter |> ignore

let rawResult = command.ExecuteReader ()

let people = seq {

while rawResult.Read() do

vield {
Id = rawResult. ["FirstName"] :?> int;
FirstName = rawResult.["FirstName"] :?> string;

LastName = rawResult.["LastName"] :?> string
}
}
people |> Seg.toList

Code snippet RawADOExample.fs

The first key difference is the inclusion of the @firstname literal within the string used to build the
command:

use command =
new SglCommand("select firstname, lastname from person where
firstname = @firstname",connection)

Retrieving Data Using ADO.NET [X301

The @firstname literal is a placeholder for where the parameter will go. This approach of using
parameters is important because without them, SQL injection bugs are almost always introduced:

use command = new SglCommand("select firstname, lastname from person where
firstname = " + firstName, connection)

If a user decides to be clever and submit a firstName of '; drop database, it is not an understate-
ment to imagine that there could be some serious issues!

When there is a query and placeholder in place, parameters can be added:

let parameter = new SglParameter ("firstName", firstName)
do command.Parameters.Add parameter |> ignore

Insert, Update, and Delete

Using the same concept of commands and parameters, the next step is to implement the other three
main database operations. The following code demonstrates how, on the vast majority of databases,
we might do those operations:

use connection =
Available for new SQ}COnneCtion("Server:localhost;Integrated security=SSPI;database=DemoData"
download on connection.Open ()
Wrox.com

, let doCreateUpdateDelete() =

//create
use createCommand =
new SglCommand ("insert into person (firstname, lastname) values

(@firstname, @lastname) ", connection)

let firstNameParameterCreate = new SglParameter ("firstName", "Aaron")

let lastNameParameterCreate = new SglParameter ("lastName", "Erickson")

do createCommand.Parameters.Add firstNameParameterCreate |> ignore

do createCommand.Parameters.Add lastNameParameterCreate |> ignore

do createCommand.ExecuteNonQuery() |> ignore

//update
use updateCommand =
new SglCommand ("update person set firstname=@firstname, lastname=@lastname

where 1d=@id", connection)

let firstNameParameterUpdate = new SglParameter ("firstName", "Not")

let lastNameParameterUpdate = new SglParameter ("lastName", "Sure")

let idParameterUpdate = new SglParameter ("id",42)

do updateCommand.Parameters.Add firstNameParameterUpdate |> ignore

do updateCommand.Parameters.Add lastNameParameterUpdate |> ignore

do updateCommand.Parameters.Add idParameterUpdate |> ignore

do updateCommand.ExecuteNonQuery () |> ignore

//delete

use deleteCommand = new SglCommand("delete person where id=@id", connection)
let idParameterDelete = new SglParameter ("id", "42")

do deleteCommand.Parameters.Add idParameterDelete |> ignore

do deleteCommand.ExecuteNonQuery () |> ignore

Code snippet RawADOExample.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

302 [XCHAPTER19 DATABASES

The only difference between the read examples and these are the use of . ExecuteNonQuery (),
which is the standard way to perform operations that do not return records from a database using
ADO.NET. Outside of that, the exact same techniques for inserting parameters into standard SQL
queries apply.

One striking thing, however, about using raw ADO.net in any language, F# included, is the raw
volume of code required to do, what are in essence, really simple tasks. When one considers that the
entire code base of the Microsoft TrueSkill system is around 100 lines of F# code, having 15 lines of
code to do three simple operations seems excessive. Thankfully, there are frameworks built on top of
ADO.net to help deal with this complexity.

F# AND OBJECT RELATIONAL MAPPING

The first place someone who is frustrated with the verbosity of raw ADO.NET might look to

get some relief is to the many Object/Relational Mapping layers out there, such as NHibernate
or the Microsoft Entity Framework. Despite the general conclusion in Ted Neward’s Famous
Essay, “The Vietnam of Computer Science” (http://blogs.tedneward.com/2006/06/26/
The+Vietnam+Of+Computer+Science.aspx), for many cases, ORMs are a great solution for many
types of problems.

You need to remember what the ‘O’ in ORM stands for — namely that it expects objects.
Objects, of course, tend to have a state that is typically assumed to be mutable. Further, most
ORM s require that properties be virtual so that their implementation can be overridden to do
things like lazy loading.

The following is a typical implementation of the Person record from the previous examples in this
chapter if you were going to use it with NHibernate:

type NHPerson() = class
let mutable _id : int = 0
i let mutable _firstName : string = ""
Available for . -
download on let mutable _lastName : string =
Wrox.com

abstract Id : int with get, set
default x.Id with get() = _id and set(v) = _id <- v

abstract FirstName : string with get, set
default x.FirstName with get() = _firstName and set(v) = _firstName <- v

abstract LastName : string with get, set
default x.LastName with get() = _lastName and set(v) = _lastName <- v
end

Code snippet NHibernateExample.fs

The situation in Entity Framework v4 (the first version to support POCO objects) is quite similar, with
the only important difference being the lack of a need for doing the abstract declarations for prop-
erties that are not going to be lazy loaded. Nearly all ORMs have a “special thing” of one type or
another that need to be done to objects to work with the ORM.

Introducing F# Active Record (FAR) [X303

In either case there are problems. Most ORM systems depend on mutability. The internal mecha-
nism of ORM systems for object construction tends to be something like:

1. Create object, usually through a parameterless constructor.

2. Set properties based on a configuration file mapping — or perhaps a fluent convention
based mapping a la FluentNHibernate.

3. Use a dynamic proxy mechanism that will intercept access to lazily loaded properties, submit-
ting additional queries to load said properties.

As has been covered before, F# programs generally avoid mutability. This is especially true if the
reason that mutability is allowed is solely to support an ORM. If one of the reasons we consider F#
is to move away from mutability, having to introduce it to make an ORM work is actually a step
backward. Generally speaking, unless there is an externally defined requirement to use an ORM, we
recommend that software developers avoid using ORM technologies with F#.

INTRODUCING F# ACTIVE RECORD (FAR)

F# Active Record (FAR) is an Open Source Project I founded that makes it possible to get ORM-like
features, but in a way that uses convention over configuration, while embracing an approach more
idiomatic to F#.

The idea with FAR is to make mapping from rows in a database to records in F# drop-dead easy,
while retaining a functional style of programming. It is not designed to cover everything that we
might ever want to do with a database. In fact, it is biased toward simplicity, leaving out edge case
features in favor of making the included functionality very robust and predictable.

Reading Data

For example, consider the following Person record definition:

type Person = {Id:int;FirstName:string;LastName:string;Age:int}

Code for populating a sequence of Person objects should look something like this:

use context = new ForSglContext ("SomeConnectionString")
let people = context.SequenceFrom<Person> ()

In this case, people is now a seg<Person> that further F# code can do work with. It is assumed
that there is a table name in the targeted database that matches the type name of Person, and

that there are columns in said table that correspond to the record properties of Td, FirstName,
LastName, and aAge. This approach works so long as a convention that type names match table
names, and property names match column names, holds true. Although this obviously can’t work
in all situations, there are a great number of cases where it does. It is those situations where the con-
vention can be maintained where this kind of approach can result in a drastic drop in the amount of
mapping code in the system.

For more on convention over configuration, please see http://en.wikipedia.org/wiki/
Convention_over_configuration.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

304 [XCHAPTER19 DATABASES

In a case where the Person table has a smaller number of rows, this approach works particularly
well. Filtering on a small set is a matter of applying Seq. filter with an appropriate predicate to
the following result.

A predicate is a function that returns true or false. A filtering predicate in this context needs to
start with one parameter of the type we are filtering and resolve to a Boolean value:

let me = people |> Seqg.filter(fun p -> p.FirstName = "Aaron")

This, however, is not an approach that will scale. If people is something more like the list of people
in the United States Social Security database, rather than the list of employees in a small company,
bringing that sequence out of the database and into memory to analyze it is not the most scalable
approach.

Querying Data

To not have to bring all the records into memory, a need will exist for a way to easily tell the system
that the predicate — the part where it is specified p -> p.FirstName = "Aaron" — should be ana-
lyzed in the database. Using FAR, the technique for doing so looks like this:

use context = new ForSglContext ("SomeConnectionString")
let me = context.SequenceFrom<Person>(<@ fun p -> p.FirstName = "Aaron" @>)

Notice two key differences in this version compared to the previous one. The first one is that the
predicate is being passed to the sequenceFrom method of the context object. This method’s purpose
is to analyze the predicate passed in, convert that predicate to the appropriate raw SQL code that
will be used for the query on the database management system, and retrieve the result in a manner
similar to the version of sequenceFrom that has no parameters and simply returns everything.

The other key difference is that the predicate was quoted (using <@ @> syntax). Quoting the
predicate is necessary in this case, as the SequenceFrom method needs to analyze the predi-

cate to evaluate it and generate a database query that will ultimately run against the database.
Remember, one of the key reasons for quotation is to execute code “by other means.” In a case
like this, the desire is to execute the predicate against the data. For that to happen, the predicate
has to be converted to a form that is useful where the query will occur, which happens to be in the
database, not in F#.

Adding Data

Creating new records in the database is nearly as simple as reading them:

type Person = {Id:int;FirstName:string;LastName:string;Age:int}
type Cat = {PetName:string;Color:string;IsCute:bool;IsMean:bool}
Available for
downloadon [<Test>]
Wrox.com static member TestReadPeopleAndPets =

use context = new ForDataContext ("SomeConnectionString")

do context.Create {Id=1;FirstName="Aaron";LastName="Erickson";Age=37} |> ignore
do context.Create {Id=2;FirstName="Erin";LastName="Erickson";Age=34} |> ignore
do context.Create {Id=3;FirstName="Adriana";LastName="Erickson";Age=13} |> ignore
do context.Create {Id=4;FirstName="Matthew";LastName="Erickson";Age=8} \> ignore

Introducing F# Active Record (FAR) [X305

let people =
context.SequenceFrom<Person>(<@ fun p -> p.LastName = "Erickson" @>)
|> Seq.toArray

Assert.AreEqual (people.Length, 4)

do context.Create {PetName="Puppy Cat";Color="Ginger";IsCute=true;IsMean=false}
|> ignore

do context.Create {PetName="Dmitry";Color="Blue-Gray";IsCute=true;IsMean=true}

|> ignore

let theCats =
context.SequenceFrom<Cat> () |> Seq.toArray

Assert.AreEqual (theCats.Length, 2)

Code snippet DALTestDriver.fs

In this example, the Person and cat types are declared using simple F# record types. Using the
ForDataContext that is created for when you want to read data, the create method can be used to
add rows to the database.

The create method is generic, in that it can detect the type of record passed to it and use that
record’s type to determine which table it should insert the record to. The create method returns
a number of rows affected, which in most operations where you are creating a row, should tend to
resolve to 1. In the preceding example, because the result is not needed for further processing, it is
simply passed to ignore, and the next record is added.

Updating Data
Update, like create, uses a convention-based minimalist approach:
do context.Update {Id=3;FirstName="Adriana";LastName="Erickson";Age=13} |> ignore
Update uses a convention that the first property that ends in 1d is expected to be, for database pur-

poses, the identity upon which the update will be based. It would roughly translate to the following
SQL code:

update person set firstname='Adriana', lastname='Erickson', age=13 where id=3

If the 7d column in the database were personid, rather than simply id, so long as personid is the
first field that ends in id in the record, the following would also work:

do context.Update {PersonId=3;FirstName="Adriana";LastName="Erickson";Age=13}
|> ignore

Deleting Data

As you might expect, deletion does not stray from our simplistic formula:

do context.Delete {Id=4;FirstName="Matthew";LastName="Erickson";Age=8} |> ignore

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

306 [XCHAPTER19 DATABASES

The preceding code specifies a query that, in this case would roughly translate to:

delete from person where id=4

Technically, for delete, only the 1d field is needed. However, because the record type defines the
table, and the record does not allow nul1l values in the other fields, the rest of the record is specified
in the example.

What Isn’t Supported

One of the reasons the library can remain as simple as it does is that it is explicitly stateless. There is
no change tracking, no concept of attach/detach, and no pretense that the library is something other
than a means to act as either a producer or consumer of F# record types. Other things that make
more traditional ORM systems complex, such as configuration files, mappings, and base classes to
inherit from, are also avoided in favor of simplicity and predictability in terms of how it works.

Coming Soon

At the time of this writing, there are some features that have yet to be implemented but should be
complete by the time of publication. Support for stored procedures, inner joins, and a broader set of
predicate types are in the works. Progress on this project can be followed at http://github.com/
ericksoa/FAR.

HOW FAR WORKS

One of the principles of being a good software developer is to have at least some level of under-
standing about how the libraries work. As such, this section explores the internals of the FAR
library.

Dependencies

To do our decomposition of a query, .NET reflection will be used, as well as various elements of
Microsoft.FSharp.Quotations. As Well, System.Data.SqglClient will be used so that the appro-
priate connections and commands can be created. Although future versions may refactor this by
extracting out database specific concerns from parsing concerns, for now, it will be assumed that the
target database is Microsoft SQL Server:

open System
open System.Reflection
Available for L Y T .
downloadon OPen System.Data.SglClient
Wrox.com open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.DerivedPatterns

) module FSharpActiveRecord

Code snippet FSharpDAL.fs

How FAR Works [X307

Utility Routines

The next two routines provide a wrapper behind creation of typical ADO.NET primitives that will
be used across various specific methods in the library:

let MakeConnection connectionString =
new SglConnection (connectionString)

let MakeCommand commandText connection =
new SglCommand (commandText, connection)

These functions provide a means for various routines within the system that need connections with-
out having to; at least in the method itself, depend on System.Data.SqglClient specifics.

The next routine is an important utility that allows you to take a sequence of strings and return a
comma-separated list:

//ConvertToCommaSeparatedString courtesy of Mark Needham, ThoughtWorks
‘) let ConvertToCommaSeparatedString (value:seg<string>) =
let rec convert (innerVal:List<string>) acc =
Available for match innervVal with
download on
Wrox.com | [1 -> acc
hd::[] -> convert [] (acc + hd)

\
| hd::tl -> convert tl (acc + hd + ", ")
convert (Seq.toList value) ""

Code snippet FSharpDAL.fs

When generating SQL, a frequent need is to generate comma-separated lists of things such as column
names and parameters. Because this list should not have a comma at the end of the list, something is
needed that distinguishes between the last item and everything else when generating the list. This rou-
tine fits the bill rather nicely.

The next thing that is needed, if you generate a lot of SQL, is something that converts primitive F#
types to strings that reflect their SQL counterparts:

let FSharpTypeToSqglType fSharpType size =
‘) match fSharpType, size with
: t, Some(s) when t = typeof<string> -> sprintf "varchar(%$i)" s
(‘i\xm?g:ifgnr , _ when t = typeof<string> -> "varchar (255)"
Wrox.com

, when t = typeof<bool> -> "bit"

t
t, _ when t = typeof<int> -> "int"
t
t

when t = typeof<DateTime> -> "datetime"
-> raise(new NotSupportedException())

[

[—

Code snippet FSharpDAL.fs

This routine takes a type (as a .NET Type object) and a size as an int option. Based on combina-
tions of type and size, it generates a SQL type signature. This type of routine is especially useful in

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

308 [XCHAPTER19 DATABASES

cases where we need to drive SQL types from .NET types, as is done in the creation of tables in a
database.

Table Creation

This is especially useful for cases when the desire is to create a table based on a record type:

let private CreateTable tableName columns connectionString =
let columnList =
1
Available for co-umns .
download on |> Seqg.map (fun (name, colType, size) ->
Wrox.com sprintf "%s %s" name (FSharpTypeToSqlType colType size))

|> ConvertToCommaSeparatedString
let query = sprintf "create table %s (%s)" tableName columnList
use connection = connectionString |> MakeConnection
use createCommand = MakeCommand query connection
do connection.Open() |> ignore
do createCommand.ExecuteNonQuery () |> ignore

let CreateTableFor<'a> connectionString =
let tableName = typeof<'a>.Name
let columnSpecSelector (p:PropertyInfo) = (p.Name,p.PropertyType,None)
let columnSpecs = typeof<'a>.GetProperties() |> Seg.map columnSpecSelector
do CreateTable tableName columnSpecs connectionString

Code snippet FSharpDAL.fs

CreateTableFor is a generic function that takes a record type that will be used as a template for creat-
ing a table and a connection string used to reach an actual database. Using .NET reflection, it uses
Seq.map to create a set of (type * name * size) tuples (columnSpecs). It passes the tableName (from
the generic type), the columnsSpecs, and the connection string to a private CreateTable method
that does the work to convert things into a SQL create table script that can be executed against a
database.

The job of generating SQL is made easy by some of the utility functions that are already in place. The
column list part of the create script, usually taking the form of something like somename sometype
somesize, anothername anothertype anothersize is handled by mapping the tuples through
FSharpToSqlType and formatting them using sprintf.

From there, the next step is to format the rest of the SQL, putting together the table and columnrist
and then do typical ADO.NET work of creating a connection and command needed to run the
actual query.

The FAR library contains many routines such as CreateTable that simplify database creation,
destruction, and other similar tasks that are especially important in setup and teardown of inte-
gration tests. Please see the book’s sample code or the FAR library website for more details on
these routines.

How FAR Works [X309

Query Processing

The real useful part of this library is the conversion of idiomatic F# code to SQL. However, for this
to work, the following is needed:

let makeSimpleSelect table fields =
let commaSeperatedFields = fields |> ConvertToCommaSeparatedString
sprintf "select %s from %$s" commaSeperatedFields table

This first routine takes a table name and a seg<string> that represents database fields. It then gen-
erates a typical SQL query that we would use against a single table. For example, passing Person
and [FirstName, LastName] would generate:

select firstname,lastname from person

This is a good start, but far more needs to be done if you want the ability for more complex predi-
cates to be passed along with a record type. More complex queries require that an expression be
parsed and tree structure be built that represents it so it can be converted to SQL. Start by defining
the following tree structure in the form of a discriminated union:

type ParseNode =
| EqualNode of Type list * Expr list
| AndNode of ParseNode option * ParseNode option
| OrNode of ParseNode option * ParseNode option
//other nodes as needed

The preceding example is a simplistic version of what can represent a parse tree. It will start with
equality tests as terminal nodes in the tree, which can be combined with various combinations of
theteﬂnsand(nfor.Forexanqﬂep.FirstName = "Aaron" and (p.LastName = "Erickson" or
p.LastName="Burr") might look like:

EqualNode OrNode-———————————————————
p.FirstName = "Aaron" |
p.LastName = "Erickson" p.LastName = "Burr"

Two routines will use this tree. One has to take an F# quoted predicate and generate the tree; the
other will recursively walk the tree to generate equivalent SQL code.

Generating the Parse Tree
Start by declaring a context from which we will run queries that contain the connection object:

type ForDataContext =
val connection : SglConnection
new (connectionString) = { connection = connectionString |> MakeConnection }
with
interface IDisposable with
member disposable.Dispose() =
disposable.connection.Close ()

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

310 [XCHAPTER19 DATABASES

Within this type, members are created that depend on this common context. The first is the routine
that generates the parse tree:

//takes a predicate and generates a tuple composed of
‘) // parameterized sgl * parameters

static member private ParseCriteria<'a> (criteria:Expr<'a -> bool>) =
Available for
download on .
Wrox.com let rec predicateParser expr =

match expr with
| SpecificCall <@ (=) @> (optionExpr, types, exprs)

-> Some (EqualNode (types, exprs))
\ SpecificCall <@ (&&) @> (optionExpr, types, exprs)
-> Some (AndNode (predicateParser (exprs. [0]) ,predicateParser (exprs.[1])))
SpecificCall <@ (||) @> (optionExpr, types, exprs)
-> Some (OrNode (predicateParser (exprs.[0]),predicateParser (exprs.[1])))
\ Patterns.IfThenElse (left, middle, right)
-> match middle with
| Patterns.Call (optionExpr, types, exprs)
-> Some (AndNode (predicateParser (left), predicateParser (middle)))
| Patterns.Value(value, valueType)
-> Some (OrNode (predicateParser (left), predicateParser (right)))
| _ -> None
| _ -> None

Code snippet FSharpDAL.fs

Our overall goal with ParseCriteria is to take a quoted predicate and generate a SQL string and a series
of ordered parameters that will be applied to that string to perform a query. This parsing is made much
ﬁnuﬂerbyindusknlOftheMicrosoft.FSharp.QuotationszuuiMicrosoft.FSharp.Quotations
.DerivedPatterns namespaces. Most of the work is done by the recursive predicateparser routine,
which recursively walks the provided predicate, mapping the expression tree to something we can
more easily consume.

SpecificCall is an active pattern that matches a given quoted expression (such as <@ (=) @>)
against what the tree contains. In F#, this works very well for the EqualNode type, which when
matched, emits an EqualNode that contains a pair of expressions and types that can be used for
generating an equals SQL expression.

The other instances of Specificcall work in certain circumstances where one would expect
them to, and if they are present, will emit the appropriate AndNode or OrNode. AndNode and
orNode both take two arguments, for their left and right side, which will be provided by recursive
calls to predicateParser on the respective left and right sides of the provided expression tree.

Of course, there is a special case, which is that sometimes optimizations get applied to the tree.
If the quoted and or quoted or get converted for some reason into IfThenElse calls in the predi-
cate, those need to be handled as well. TfThenElse is another active pattern that can be used to
match against for that case. and and or both get converted to TfThenElse in certain ways that
are recognizable. If the middle node in TfThenElse is a Call, it can be deduced that it was con-
verted from (&&), and be handled accordingly. If it is a value, it can be deduced it was converted
from (] |).

How FAR Works [X311

Available for
download on

The result of all this, provided that the expression matches the rules, is a tree that we can much
more cleanly generate SQL from, as the following demonstrates:

let paramEnumerator =
let paramNames = 1
|> Seqg.unfold (fun i -> Some(i+l,i))
|> Seg.map(fun i -> sprintf "param%i" i)

Wrox.com paramNames .GetEnumerator ()

let nextParam() =
paramEnumerator.MoveNext () |> ignore
paramEnumerator.Current

let paramList = new System.Collections.Generic.List<string * obj>()

let rec queryString (treeNode:ParseNode option) =
match treeNode with
| Some(node) ->
match node with
| EqualNode (left,right) ->
match (right.[0],right.[1]) with
\ (Patterns.PropertyGet (option,property,someList),
Patterns.Value(value, valueType)) ->
let p = nextParam()
do (p,value) |> paramList.Add
sprintf "%s = @%s" property.Name p
| _ -> raise(new InvalidOperationException())
| AndNode (left,right)

-> gprintf "(%s and %s)" (queryString left) (queryString right)
| OrNode (left,right)
-> sprintf "(%s or %s)" (queryString left) (queryString right)
| None -> "

Code snippet FSharpDAL.fs

There are a couple of things that need to be done here. The first step is to generate SQL that will be
transformed into the where clause at the end of the overall SQL query. The next step is to generate a
set of parameter objects that will be used with the ADO.NET command object to thread the query
parameters together.

To do the parameter list, it will be necessary to use a mutable list structure that can be added to and
that holds the parameter names and values. Also needed will be something that generates unique
parameter names. These parameters need to be generated on an on-demand basis while parsing is
taking place. The paramEnumerator is a utility that can be used to act as something of a dispenser
for parameters that are guaranteed to be unique to the query. The nextParam() function executes
this generator, as is used by querystring as it is doing its work. paramList is then used to accumu-
late these parameters as queryString does its work.

The real work of querystring is to handle the various node cases, and either just generate SQL
(in the case of an EqualNode), or — in the case of AndNode or OrNode — take the result of recur-
sive queryString calls and compound the results together into the appropriate syntax.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

312 [XCHAPTER19 DATABASES

This is all brought together in the full implementation of ParseCriteria:

//takes a predicate and generates a tuple composed of

\) // parameterized sgl * parameters

- static member private ParseCriteria<'a> (criteria:Expr<'a -> bool>) =
Available for
download on
Wrox.com let rec predicateParser expr =

match expr with
| SpecificCall <@ (=) @> (optionExpr, types, exprs)

-> Some (EqualNode (types, exprs))
\ SpecificCall <@ (&&) @> (optionExpr, types, exprs)
-> Some (AndNode (predicateParser (exprs. [0]) ,predicateParser (exprs.[1])))
| SpecificCall <@ (|]|) @> (optionExpr, types, exprs)
-> Some (OrNode (predicateParser (exprs.[0]),predicateParser (exprs.[1])))
\ Patterns.IfThenElse (left, middle, right)
-> match middle with
| Patterns.Call (optionExpr, types, exprs)
-> Some (AndNode (predicateParser (left), predicateParser (middle)))
| Patterns.Value(value, valueType)
-> Some (OrNode (predicateParser (left), predicateParser (right)))
| _ -> None
| _ -> None

let parsedResult =
match criteria with
| Patterns.Lambda(var,lambda) -> predicateParser lambda
| _ -> None

let paramEnumerator =
let paramNames = 1
|> Seg.unfold (fun i -> Some(i+l,i)) |> Seg.map(fun i
-> gprintf "param%i" i)
paramNames .GetEnumerator ()

let nextParam() =
paramEnumerator.MoveNext () |> ignore
paramEnumerator.Current

let paramList = new System.Collections.Generic.List<string * obj>()

let rec queryString (treeNode:ParseNode option) =
match treeNode with
| Some(node) ->
match node with
| EqualNode (left,right) ->
match (right.[0],right.[1]) with
| (Patterns.PropertyGet (option,property,someList),
Patterns.Value(value, valueType)) ->
let p = nextParam()
do (p,value) |> paramList.Add
sprintf "%s = @%s" property.Name p
| _ -> raise(new InvalidOperationException())
| AndNode (left,right)
-> gprintf " (%s and %s)" (queryString left) (queryString right)
| OrNode (left,right)

How FAR Works [X313

-> gprintf "(%s or %s)" (queryString left) (queryString right)
| None -> "

queryString parsedResult, paramList.ToArray ()

Code snippet FSharpDAL.fs

Of course, a couple more utility functions are needed to make the context work. A connection needs
to be opened if it isn’t open yet. (Remember, we can run multiple queries from the same context.)
Also needed is a way to easily take the SQL and command objects and execute them:

member private context.OpenConnectionIfNeeded() =
if (context.connection.State <> Data.ConnectionState.Open)
then context.connection.Open
Available for pen ()
download on
Wrox.com //core routine that takes sgl + parameters and yields readers that

// eventually get composed into records we want to work with
member private context.DoQuery query (rawParameters:array<string * #obj>) =
use command = MakeCommand query context.connection
do rawParameters
|> Array.map(fun r -> new SqlParameter (fst r,snd r))
\> Array.iter(fun p -> command.Parameters.Add p |> ignore)
do context.OpenConnectionIfNeeded ()
let reader = command.ExecuteReader ()
seq { while reader.Read() do yield reader }

member private context.DoCommand command (rawParameters:array<string * #obj>) =
use command = MakeCommand command context.connection
do rawParameters
|> Array.map(fun r -> new SqlParameter (fst r,snd r))
\> Array.iter(fun p -> command.Parameters.Add p |> ignore)
do context.OpenConnectionIfNeeded ()
command . ExecuteNonQuery ()

Code snippet FSharpDAL.fs

These methods use similar techniques that were used when doing raw ADO for creating and using
connections and commands. The only difference is they do so in a much more generic fashion. With
these utility methods in place, the next step is to go forth and implement the query interface:

//core routine that composes and executes the query
‘) member private context.SequenceFrom<'a>
Available for ((whereClause:string), (parameters:array<string * #obj>)) =
download on let tableName = typeof<'a>.Name
Wrox.com let memberNameSelector (m:#MemberInfo) = m.Name
let propertyNames = typeof<'a>.GetProperties() |> Seg.map memberNameSelector
let query = (makeSimpleSelect tableName propertyNames) + " " + whereClause

let creator = Reflection.FSharpValue.PreComputeRecordConstructor (
typeof<'a>,BindingFlags.Public)

let data = context.DoQuery query parameters

let readObjectsFromReaderByField (reader:SglDataReader) (keys:seg<string>) =
keys |> Seqg.map(fun(k) -> reader.[k]) |> Seq. toArray

data |> Seq.map(

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

314 [XCHAPTER19 DATABASES

fun r -> creator (readObjectsFromReaderByField r propertyNames) :?> 'a)

//Performs queries where you have (for now) simple object.Property = someValue
member context.SequenceFrom<'a> (criteria:Expr<'a -> bool>) =
let gueryAndParams = criteria |> ForDataContext.ParseCriteria
context.SequenceFrom<'a> (
(sprintf "where %$s" (fst queryAndParams)), (snd queryAndParams))

Code snippet FSharpDAL.fs

The public version takes the quoted predicate criteria, generates a SQL query and parameter set, and
calls the private sequenceFrom, which expects a where clause in string form, as well as an array of
parameter name and object tuples that will be used for parameters.

In the private overload of sequenceFrom, the rest of the query will be built. F# reflection is used to
build a mechanism (creator, in the preceding example) for creating F# records based on results we
get returned from the sqlDataReader.

When a creator is set up, the next step is to call context .DoQuery that yields a DataReader that,
when iterated, advances through the records. What is returned is a sequence iterator that converts
each state of the sqglpataReader into the appropriate record type. What is notable about this is that
it returns a seg<'a> for a reason. A user of the library could choose to take only the top five ele-
ments, and in doing so, will use the built in forward-only cursor functionality of MS SQL Server to
avoid taking the entire set of rows over the wire for only the top five elements.

Wrapping up, for the convenience of people who want to read all the records, this overload is added:

//simple case where we are getting all the rows from a table
member context.SequenceFrom<'a>() =
context.SequenceFrom<'a> (String.Empty,Array.empty)

Implementation of Other FOR Operations

Other operations are, thankfully, much simpler to implement. Take create for example:

member context.Create someObject =
let tableName = someObject.GetType () .Name
N let columnsAndValues =

Available for . .
download on someObject.GetType () .GetProperties() |> Seq.map
Wrox.com fun p -> (p.Name,p.GetValue (someObject,Array.empty)))

let columnNames columnsValuePair =

columnsValuePair

|> Seg.map(fun pair -> fst pair)
|> ConvertToCommaSeparatedString
let convertToValueParameterBucket columnsValuePair =
columnsValuePair
|> Seqg.map(fun pair -> sprintf "@%s" (fst pair))
|> ConvertToCommaSeparatedString
let query =
sprintf
"insert into %s (%s) values (%s)"
tableName

Summary [X315

(columnsAndvValues |> columnNames)

(columnsAndvValues |> convertToValueParameterBucket)
let parameters = columnsAndValues |> Seq.toArray
context.DoCommand query parameters

Code snippet FSharpDAL.fs

The common pattern for nonquery operations where a parse tree need not be analyzed is simply
to do some reflection over the generic type, read the values from the provided record in some man-
ner that matches a convention, construct a SQL command, and execute it. The implementations of
delete and update differ only by the SQL that is generated; nearly everything else is the same.

The Use Case for F# Active Record

FAR, as a library, is meant to be a simple, minimalist, and illustrative implementation that covers
a large, but not exhaustive, set of cases for how F# applications might access data. It does so in a
manner that allows the library to be independent of the domain, avoiding inheritance or any other
special “things” that need to be done to make a record work with FAR. If you have a record, and
you have a table and columns that match up, FAR can work.

SUMMARY

In this chapter, we covered ways for F# programs to interact with data, particular in ways that will
feel idiomatic to F# developers. You may choose to use raw ADO.NET, use F# Active Record, or use
one of the more object-oriented frameworks. What is important, across all of these, is to minimize
the amount of plumbing code you write, so you can focus on doing something with data, rather
than simply gathering it.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

XML

WHAT'’S IN THIS CHAPTER?

Making F# work with XML
Using Ling to XML with F#

o
o
® Understanding how F# and DOM work together
o

Applying active patterns for XML parsing

XML is a fact of life for most software developers, regardless of language. It is found every-
where, from configuration files holding nothing but a small number of settings, to the giant
stores of weather data provided in XML format by the National Oceanic and Atmospheric
Administration of the United States. Although history will judge whether having all this
XML was a good idea, the fact remains that it’s there. Love it or hate it, developers have to
deal with it.

In this chapter, you learn how to use F# with XML processing tools such as those found in
the system.xml namespace in the .NET framework. This chapter covers techniques that
simplify most XML processing tasks. Special attention is provided to demonstrate how
you can use things such as XPath and active patterns to simplify the task of processing and
transforming XML.

OVERVIEW

Boiled down to its essence, most things that deal with XML do the following:
© Read XML, typically to store it in some sort of language representation

© Query the XML, often again to extract parts of it into some sort of language
representation

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

318 [XCHAPTER20 XML

Process the XML, sometimes to produce more XML or to generate some side effect

© Persist the XML, so that other programs can join in the fun of working with XML

For more details on the various W3C standards that make up the XML grammar and suite of speci-
fications, we recommend the W3C website.

F# AND LINQ-TO-XML

Of the various means to read and process XML, LINQ-to-X ML, introduced in .NET 3.5, is likely
the simplest way to query and process XML in F#.

Reading

Imagine writing an application that reads a weather forecast from the Internet and presents an
average expected temperature to the user. When using the weather service in the Yahoo developer
API to read the weather report, you might request the response from the Yahoo API URL http://
weather.yahooapis.com/forecastrss?w=2484280.Therequeﬁthatresuksfﬂnnthatca”reads
as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"
xmlns:geo="http://www.w3.0rg/2003/01/geo/wgs84_pos#">

<channel>

<title>Yahoo! Weather - Romeoville, IL</title>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/Romeoville__ IL/
*http://weather.yahoo.com/forecast/USIL1019_f.html</link>
<description>Yahoo! Weather for Romeoville, IL</description>
<language>en-us</language>

<lastBuildDate>Sun, 20 Dec 2009 4:44 pm CST</lastBuildDate>

<ttl>60</ttl>

<yweather:location city="Romeoville" region="IL" country="United States"/>

<yweather:units temperature="F" distance="mi" pressure="in" speed="mph"/>

<yweather:wind chill="27" direction="0" speed="0" />

<yweather:atmosphere humidity="83" wvisibility="5" pressure="30.07" rising="1" />
<yweather:astronomy sunrise="7:15 am" sunset="4:24 pm"/>



<item>

<title>Conditions for Romeoville, IL at 4:44 pm CST</title>
<geo:lat>41.64</geo:lat>

<geo:long>-88.08</geo:long>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/Romeoville_ IL/

F# and LINQ-to-XML [X319

*http://weather.yahoo.com/forecast/USIL1019_f.html</link>

<pubDate>Sun, 20 Dec 2009 4:44 pm CST</pubDate>

<yweather:condition text="Cloudy" code="26" temp="27" date="Sun, 20 Dec 2009
4:44 pm CST" />

<description><! [CDATA [

Current Conditions:

Cloudy, 27 F

Forecast:

Sun - Light Snow Early. High: 29 Low: 23

Mon - Cloudy. High: 28 Low: 25

<a href="http://us.rd.yahoo.com/dailynews/rss/weather/Romeoville_ IL/
*http://weather.yahoo.com/forecast/USIL1019_f.html">Full Forecast at Yahoo!
Weather

(provided by The Weather Channel)

]1></description>

<yweather: forecast day="Sun" date="20 Dec 2009" low="23" high="29"
text="Light Snow Early" code="14" />

<yweather:forecast day="Mon" date="21 Dec 2009" low="25" high="28"
text="Cloudy" code="26" />

<guid isPermalLink="false">USIL1019_2009_12_20_16_44_CST</guid>

</item>

</channel>
</rss><!-- api6.weather.acd.yahoo.com compressed/chunked Sun Dec 20 15:02:47 PST
2009 -->

Although reading this whole request manually and parsing it might be an interesting exercise, Linq
to XML with F# provide us a much simpler means to perform this task. Start off by reading the
result of the URL into an XDocument, from Ling to XML:

let weatherXml =
"http://weather.yahooapis.com/forecastrss?w=2484280" |>
XDocument .Load

The simplest way to start reading XML when you have a valid xbocument reference is to simply
inspect the elements and do something with them:

let readTheElements =
weatherXml.Elements () |>
Seg.iter (fun(e) -> do printfn "%s" e.Value)

The preceding function takes all the Elements at the root of the document (in this case, a single
element of an RSS feed at the top level) and prints them out to standard output (in this case, the
console). This includes not just those elements at the top level of the document, but all elements,
regardless of level. The sequence of elements is passed to Seq.iter, which applies the function to
each xElement in the sequence. The function being applied to each element takes the element, prints
it to the screen, and returns unit.

Of course, the question frequently comes up about what the order of the elements will be when
doing queries against XML in this manner. In the aforementioned example, order is not rel-
evant to the task, so it is not specified. That said, because the XML order is usually controlled

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

320 [XCHAPTER20 XML

by implementation-specific factors at the site that produces the XML, it is usually a bad idea to
depend on implicit order from the document. Should we want to control the order of processing,
the preferred approach is to take the sequence that results from Elements () and process the results
through seq.orderBy with the appropriate explicit ordering function.

Although we can certainly do a lot of interesting work simply reading XML and processing it some-
how, the real power of LINQ to XML is in the query capability. In fact, if you are simply reading
XML and doing your own queries using for loops and if statements, you are not really leveraging
the power of F# or LINQ to XML to make your code more readable and efficient.

Querying

LINQ-to-XML was built to make code that queries XML documents more readable. Recall the
previous short snippet of F# that accesses the URL that contains an upcoming weather forecast and
then parses it into an XML document for further use:

let weatherXml =

"http://weather.yahooapis.com/forecastrss?w=2484280" |>
XDocument . Load

The preceding statement creates a weatherxml function that returns an XDocument represent-
ing a weather forecast for Romeoville, Illinois. XDocument is the root of most LINQ-to-XML
operations and has factory methods to create an XDocument instance from a variety of different

sources:
METHOD PURPOSE
XDocument . Load Create an XDocument based on a URI, TextReader, XmlReader, Or
stream.
XDocument .Parse Create an XDocument based on a string of XML content.

The resulting XDocument provides a base from which further queries can be performed. For
example, to produce a sequence of all elements that have forecast as the element name in the local
namespace, we apply a filter to the descendant xElements of the XDocument, using the Seq. filter
higher-order function:

let weatherXml =
‘) "http://weather.yahooapis.com/forecastrss?w=2484280" |>
XDocument . Load
Availablefor 1ot forecastElements =
download on
Wrox.com weatherXml.Descendants ()

|> Seqg.filter(fun(e) -> e.Name.LocalName = "forecast")

Code snippet XmlDemo.fs

The Descendants () method on the object returned from weatherxml returns a sequence of all
the xElements below that given element. When called on an xDocument, the sequence represents
all the xElements in the particular xDocument.

F# and LINQ-to-XML [X321

If we then assume that we want to find all the attributes of all the forecast elements, this is done eas-
ily by pipelining two more lines of code:

let weatherXml =
‘) "http://weather.yahooapis.com/forecastrss?w=2484280" |>
: XDocument .Load
dA‘o’\?\;A?lIJ)all?lf(()]r: let allForecastAttributes =
Wrox.com weatherXml .Descendants ()
\> Seq.filter(fun(e) -> e.Name.LocalName = "forecast")

|> Seq.collect (fun(e) -> e.Attributes())

Code snippet XmlDemo.fs

The seq.map gathers the attributes from each element, which yields a result of a sequence of
sequences with all the attributes of various forecast elements. A good way to think about the result
of that line is to imagine a series of piles of attributes, each pile relating to an element from which it
came. The next line, seq.concat, puts all the attributes into a single sequence of attributes, stacking
all the separate “piles” into a single stack of attributes.

From here, we may be interested only in attributes that relate to a low or high temperature in a fore-
cast. To gather those attributes, we add the following:

let weatherXml =
‘) "http://weather.yahooapis.com/forecastrss?w=2484280" |>
: XDocument . Load
(‘i\xm?g:i?nr let allHighAndLowAttributes =
Wrox.com weatherXml.Descendants ()
\> Seq.filter(fun(e) -> e.Name.LocalName = "forecast")
|> Seq.collect (fun(e) -> e.Attributes())
|> seq.filter(fun(a) -> a.Name.LocalName = "high" ||
a.Name.LocalName = "low")

Code snippet XmlDemo.fs

The function al1HighAndLowAttributes returns a sequence of XAttribute objects, namely,
attributes named "high" and "low", for computing the expected average temperature over all the
forecasts provided by the Yahoo weather service. From here, if we want to compute the average, we
simply need to take the values from string into double and then compute the average:

let weatherXml =
\) "http://weather.yahooapis.com/forecastrss?w=2484280" |>
XDocument .Load
Available for

let averageForecastTemp =

download on

Wrox.com weatherXml .Descendants ()
|> Seg.filter(fun(e) -> e.Name.LocalName = "forecast")
|> Seqg.collect (fun(e) -> e.Attributes())
|> Seq.filter(fun(a) -> a.Name.LocalName = "high" ||

a.Name.LocalName = "low")
|> Seqg.map (fun(a) -> a.Value |> Double.Parse)
|> Seq.average

Code snippet XmlDemo.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

322 [XCHAPTER20 XML

Two statements are added here. First, the Seq.map statement takes the value property of each attri-
bute and parses it into a double. Note that there is an assumption here that the attribute value is

numeric for
a non-nume

The second

the sake of clarity; we could also use Double.TryParse to filter out any attributes with
ric value.

statement added takes the resulting doubles and produces the average using

Seqg.average.

Of course, t

he readability and reusability of this leaves much to be desired, so a quick refactoring

where the functions are more properly named and where the magic number in the URI is removed

reads as foll

let ge
“;, let

sp
Available for
download on
Wrox.com let

e
let
e
let
a
let
a

let
we

aver

OWS:

tYahooWeather id =
weatherXml =
rintf "http://weather.yahooapis.com/forecastrss?w=%d" id |>

XDocument . Load

byForecastElements (e:XElement) =

.Name.LocalName = "forecast"

elementToAttributes (e:XElement) =

.Attributes()

byHighAndLowAttributes (a:XAttribute) =
.Name.LocalName = "high" || a.Name.LocalName = "low"
attributevValueToDouble (a:XAttribute) =

.Value |> Double.Parse

averageForecastTemp =

atherXml .Descendants ()
Seq.filter byForecastElements
Seg.collect elementToAttributes
Seq.filter byHighAndLowAttributes
Seqg.map attributeValueToDouble
Seq.average

ageForecastTemp

let avgRomeovl1Tmp = 2484280 |> getYahooWeather

printf

n "Avg Forecast Temp for Romeoville, IL is %g" avgRomeov1lTmp

Code snippet XmlDemo.fs

Although this last step does not add much functionality to the query, it does make it simpler to
understand what the query is doing. It also provides a means to perhaps compose other queries out

of the parts

that were used to build this one.

Processing

Of course, s
applications

imply taking a forecast from a source and republishing it is not terribly useful. Many
that deal with XML want to process the XML in some way that adds value to the origi-

nal document.

In this use case, the goal is to take the weather information from Romeoville, IL, and add some

useful infor
that creates

mation about such a “vacation destination.” Let’s start again by writing a function
the weather xDocument based on the Yahoo “Where on Earth ID” of a locality:

F# and LINQ-to-XML [X323

let getYahooWeather id =
sprintf "http://weather.yahooapis.com/forecastrss?w=%d" id |>
XDocument .Load

To add the information, we need to create an XElement that represents information about a
community:

let makeCommunityInfoElement (s:string) =
new XElement (XName.Get ("communityinfo"),s)

One notable thing about this statement is that if s is not constrained to string, the XElement
constructor will not determine which constructor overload to call. This is because there are two
constructors that have an xName as a first parameter combined with a second parameter.

When we have these tools, all that is needed is a function that will insert an XElement in some loca-
tion in the document that makes sense. If what is wanted is an element to be inserted after all the
individual forecast elements, write the following:

let insertCommunityInfo (doc:XDocument) (commInfo:XElement) =
‘) let last sequence =
sequence
Available for : _
download on |> Seqg.skip((sequence |> Seq.length) 1)
Wrox.com |> Seq.head

let lastForecast =
doc.Descendants ()
|> Seq.filter (fun(e) -> e.Name.LocalName = "forecast")
|> last

do commInfo |> lastForecast.AddAfterSelf

Code snippet XmlDemo.fs

One thing that is quickly found is that there is no 1ast method on seg<a'>, so one will need to be
written. Doing so is a matter of skipping to the next to last item using Seq.skip, passing it a length
based on Seq.length - 1, and then taking the seq.head of the resulting one item sequence.

When a workable implementation of 1ast is written, we can much more easily get the last forecast
by taking all elements via document .Descendants (), filtering by forecast, and taking the last item
using last.

With 1astForecast, the next step is to take the communityInfo XxElement and pass it to the
Addafterself method. In this case, the do syntax is used to more clearly specify that what fol-
lows will cause a side effect. Although we could achieve the same result by passing the result of
AddAftersSelf to ignore, using the do syntax more explicitly signals the reader of the code that
we are doing something that causes a side effect, namely, mutating the XML structure by adding
an element.

Next, put this all together using the following:

let townDoc = 2484280 |> getYahooWeather

let townInfo =
"Fine Bedroom Community with Two Sushi Bars" |>
makeCommunityInfoElement

do insertCommunityInfo townDoc townInfo

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

324 [XCHAPTER20 XML

Here the code is simply getting an XDocument to manipulate, getting an XElement to add to the tree,
and then affixing the new xElement to the XDocument using insertCommunityInfo. Again, the do
statement is used to indicate that we expect the line to cause a side effect.

This is just one example of many things you can do to process XML. The following methods can
also be called to provide various means of processing the XML tree.

METHOD PURPOSE

Add Adds the specified content as a child

AddAafterSelf Adds the specified content immediately after this node
AddAnnotation Adds an object to the annotation list

AddBeforesSelf Adds the specified content immediately before this node
AddFirst Adds the specified content as the first child

Remove Removes this node from its parent

RemoveAll Removes all nodes and attributes

RemoveAnnotations Removes all annotations

RemoveAttributes Removes all attributes

RemoveNodes Removes all nodes

ReplaceAll Replaces the child nodes and the attributes of this element with

the specified content

ReplaceAttributes Replaces the attributes of this element with the specified
content

ReplaceNodes Replaces the children nodes with the specified content

ReplaceWith Replaces this node with the specified content

SetAttributeValue Sets the value of an attribute, adds an attribute, or removes an
attribute

SetElementValue Sets the value of a child element, adds a child element, or

removes a child element

SetValue Sets the value of this element

http://msdn.microsoft.com/

Of course, the standard warning about programming with side effects is true for any code where
you are mutating the XML document using these methods. Using these methods with async work-
flows or any other technology like PLinq that may do the operations in a different order can result
in bugs that are hard to re-create.

F# and XML DOM [X325

Writing
In the .NET framework, writing XML uses similar techniques, nearly all of which involve having
a method that does XML serialization using the xmlwriter class. The simplest way to write out an
XML file would be to simply do the following, given an XDocument named townDoc:
let writeToXml (doc:XDocument) (file:string) =

use xmlWriter = file |> XmlWriter.Create
do doc.WriteTo xmlWriter

do writeToXml townDoc "yourOutput.xml"

Running this code will serialize the contents of townDoc to a copy of youroutput .xml in the cur-
rent directory, overwriting the file if it already exists. One particularly important step here is to use
the use binding with the xmlwriter so that the xmilwriter object will be closed when writeToxml
completes, thereby flushing the underlying stream buffer.

Note that none of these examples worry about handling exceptions. Because
these examples have nothing they can do in response to any thrown excep-
tion (such as a file being locked that we want to write to), it is assumed that the
exceptions will be handled by something further up the call stack.

Writing XML to Memory or Other Stream-Based Resources

Frequently, the need arises to serialize to something other than a file. The following code will serial-
ize a document to a MemoryStream:

use stream = new MemoryStream()

! let writeToMemory (doc:XDocument) =
use xmlWriter = stream |> XmlWriter.Create

Available for ; ;
download on do doc.ert(.eTo xr.nlerter
Wrox.com //do something with the memory stream

do writeToMemory townDoc

Code snippet XmlDemo.fs

In the preceding case where we are writing to memory, we can create a stream (note the use of use bind-
ing again), create an xmlWriter using the stream, and use the same writeTo method with the resulting
xmlwriter. The only difference here when compared to writing XML to a file is that we explicitly create
the kind of stream we want to write to. Most other types of XML output will work in a similar fashion.

F# AND XML DOM

F# just as easily supports XML DOM, and for that matter, any other .NET-based API for work-
ing with XML content. Although LINQ-to-XML is certainly convenient, many developers (or their
managers!) prefer to stick with DOM because of the status of XML DOM as a W3C standard.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

326 [XCHAPTER20 XML

Note that, technically, Microsoft’s implementation of DOM isn’t 100% compli-
ant with the W3C DOM specification, because it takes a few of the DOM APIs
and transforms them into something more C#/.NET-appropriate. Having said
that, conceptually, they are identical.

Reading

Reading XML using XML DOM in F# is somewhat similar to the way you would do it using
LINQ-to-XML:

use xmlReader =

! let getYahooWeatherDOM id =
sprintf "http://weather.yahooapis.com/forecastrss?w=%d" id |>

Available for

download on XmlReader.Create

Wrox.com let xmlDoc = new XmlDocument ()
do xmlReader |> xmlDoc.Load
xmlDoc

Code snippet XmlDemo.fs

A key difference between the APIs is that the xml1Document object itself is explicitly created, rather
than using a factory method like we did with Ling to XML. The xm1Reader object is also created
separately. The 1oad method of the xml1Document then takes an xmlReader as a parameter, populat-
ing the xmlDocument.

Of course, there are other means of loading an xm1Document object, such as the following:

METHOD PURPOSE

XmlDocument .Load Create an XDocument based on a file, TextReader,
XmlReader, or stream.

XmlDocument . LoadXml Create an XDocument based on a string of XML content.
Note that LoadXml is not part of the DOM standard.

To start simply reading from the document, run the following:

let weatherDom = 2484280 |> getYahooWeatherDOM
do weatherDom.SelectNodes ("*") \ >
Seq.cast<XmlNode> |>

Seg.iter (fun(e) -> do printfn "%s" e.Value)

There are a couple complexities that emerge when reading via XML DOM. The first complexity is
that rather than the simple act of reading, XML means we are going to work with XPath, a stan-
dard query language for working with XML. The SelectNodes method of an xm1Document object
takes an XPath query as a parameter. The query for seeking all elements that are at the top level of a
document is a simple wildcard (“*”), which is used above with selectNodes.

F# and XML DOM [X327

Another complexity when dealing with DOM is that the results of XPath queries do not support
the TEnumerable<T> interface, which is required to use most Seq methods to interact with the
document. Should we want to use seq methods, the result of any SelectNodes query has to be
passed to Seq.cast<XmlNode>, which takes an IEnumerable and produces an IEnumerable<T>.
Note that this will fail if any objects in the source collection do not derive from xm1Node; thank-
fully, everything that returns from selectNodes does in fact derive from xm1Node, making this not
an issue in this case.

Querying

Going further with querying using XML DOM involves getting more familiar with XPath syntax.
In the prior querying example with Linq to XML, solving the problem required retrieval of all the
attributes with values equal to high and 1ow in the document. Below are some queries that demon-
strate different means of querying for the attributes of interest, including the a11 high or low query
that is useful for solving the problem:

let allAttributesInTheDocument = weatherDom.SelectNodes("//@")
i let allLowAttributes = weatherDom.SelectNodes ("//@low")
Available for
download on //the query we really want...
Wrox.com let allLowOrHighAttributes =
weatherDom.SelectNodes ("//@low | //@high")

! let weatherDom = 2484280 |> getYahooWeatherDOM

Code snippet XmlDemo.fs

Here are three different queries — all of which demonstrate, with increasing precision, ways to reach
the attributes we are looking for. The "/ /" string tells xPath to recurse through the entire document
hierarchy. The "e" symbol then tells XPath to look for attributes. In the second query, we further
specify the name of the attributes we are looking for (1ow, in this case). The "//@low | //@high"
query specifies both high and 1ow attributes.

Recall that the problem criteria require retrieval of the average temperature. To get the average
temperature again, do the following:

let allLowOrHighAttributes =
: weatherDom. SelectNodes ("//@low \ //@high")
mfﬂgﬁm let nodeValueToDouble (n:XmlNode) =
Wrox.com n.Value |> Double.Parse
let averageTemp =
allLowOrHighAttributes
|> Seq.cast<XmlNode>
|> Seqg.map nodeValueToDouble
|> Seq.average

! let weatherDom = 2484280 |> getYahooWeatherDOM

Code snippet XmlDemo.fs

Like before when the solution was to simply read elements, this solution requires casting the result
of the XPath query using Seq.cast<xmlNode>, so you can do further seq operations on it. When

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

328 [XCHAPTER20 XML

casted to xm1Node, the next step is to cast the attribute strings that represent the temperatures
into double (using our previous nodeValueToDouble function). When converted into a sequence
of doubles, the average can be computed using Seq.average.

Processing

XML DOM provides plenty of means to manipulate XML documents. In the previous example for
LINQ-to-XML, information was added to the weather forecast. The process is similar in DOM,
which starts by creating the xm1Node that should be added to the DOM:

let communityInfo = weatherDom.CreateElement ("communityinfo")
do communityInfo.InnerText <- "Fine Community with Two Sushi Bars"

A key difference in DOM is that creation of elements in DOM happens via the parent docu-
ment you want to create the element in, which is what is done in the previous weatherDom.
CreateElement ("communityinfo"). Setting the content is a separate line of code where the
InnerText property is mutated to contain the content that we want.

let insertCommunityInfoDom (doc:XmlDocument) (commInfo:XmlNode) =
‘) let last sequence =
; sequence
ﬁmwmgﬁgﬁ |> Seq.skip((sequence |> Seqg.length) - 1)
Wrox.com |> Seq.head
let lastForecast =
doc.SelectNodes ("//*[local-name()="'forecast']")
|> Seq.cast<XmlNode>
|> last
do lastForecast.ParentNode.InsertAfter (commInfo, lastForecast) |>
ignore

do insertCommunityInfoDom weatherDom commInfo

Code snippet XmlDemo.fs

The insertion routine works a bit differently as well. The implementation of 1ast from the LINQ-
to-XML example is borrowed (see the prior section on LINQ-to-XML). That is where the similarity
ends though. Getting the last forecast element is a bit more involved, as there is a need to start by
passing an XPath query into the xm1Document that specifies forecast elements.

Note that the forecast elements are actually in the yweather namespace. In the LINQ-to-XML
example, queries are easily based on element .Name.LocalName, because the name is scoped to
the yweather namespace. When using XPath, we have to use the XPath 1ocal-name () func-
tion to achieve a similar result. We could also do work to attach a namespace to the selectNodes
query — however, it would be quite a bit more work to do so, and is probably unnecessary here.

When the weather nodes have been retrieved, the next step is a familiar cast to a sequence of
xmlNode using Seq.cast and then grabbing the 1ast element. When the 1ast element is found,
call Tnsertafter on the ParentNode, whatever that might be, and pass it the new xm1Node, as well
as the lastForecast node that is the node that will be appended. Although this call returns the
xmlNode back, because nothing further is needed from the xmiNode, it can be safely passed

to ignore.

F#, XML, and Active Patterns [X329

Writing

Writing XML out to a file, or a stream, using XML DOM is as simple, if not simpler, than LINQ-
to-XML. To save to a file, it is as simple as calling the save method, passing it a filename or a fully
qualified path:

weatherDom. Save ("yourOQutput .xml")

Should you want to save to a stream, be it a MemoryStream or any other object that inherits from
Stream, pass the Stream object as well:

weatherDom. Save (someStream)

It is notable that writing XML out largely builds on the .NET IO capabilities, nicely making sure
that XML processing concerns are separated from concerns related to how such XML is persisted.
This general feature helps make sure that any code you write to deal with XML is very much
focused on XML processing and not 10 concerns.

F#, XML, AND ACTIVE PATTERNS

If we remove the fascination with angle-brackets and structure and look carefully at an XML docu-
ment, a curious thing emerges: XML looks very much like name-value pairs, name-value-attribute
triplets (where the attributes are a list of name-value pairs themselves), name-value-children trip-
lets (where children are another list), or name-value-attribute-children quads. In other words,

from a certain point of view, XML documents are basically lists of tuples, nestled in a hierarchical
relationship.

Given this perspective, and the fact that active patterns (described in detail in Chapter 6) are used
in F# to do “data decomposition,” it seems reasonable to expect that active patterns can help break
XML trees down into more palatable data structures that F# can process more easily. And as it
turns out, it is but requires a slightly different approach to querying and processing than what the
imperative programmer is used to.

Let’s work with a slightly different XML model, one that’s a bit simpler than the XML returned by
the weather service (and, arguably, more like the XML that flies around inside a corporate intranet),
that describes various famous (and/or infamous) characters:

<data>
‘) <item>

<person gender="male">

Available for
download on <name>Ted Neward</name>
Wrox.com <age>38</age>

<languages>
<language>English</language>
<language>French</language>
<language>C#</language>
<language>Java</language>
<language>F#</language>
<language>Scala</language>

</languages>

</person>

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

330 [XCHAPTER20 XML

</item>
<item>
<person gender="male">
<name>Han Solo</name>
<age>35</age>
<languages>
<language>Imperial Standard</language>
<language>Wookiee</language>
</languages>
</person>
</item>
<item>
<person gender="male">
<name>Gaius Baltar</name>
<age>35</age>
<languages>
<language>Colonial English</language>
<language>Cylon</language>
</languages>
</person>
</item>
</data>

Code snippet XMLActiveExamplel.xml

The goal here is to use active patterns to break this document down into the repetitive person struc-
ture that appears repeatedly and transform it into a form more easily used within an F# program.

Recall from the discussion on active patterns that three basic forms of active patterns are available:
the single-case active pattern, which converts data from one form to another; the partial-case active
pattern, which helps to match when data conversion failures are possible or likely; and the multi-case
active pattern, which can take the input data and break it down into one of several different data
groupings. Although only one structure appears in the preceding example (the person structure), it
remains a reasonable assumption to imagine that other data structures can, will, or do appear in the
document later. This implies that either the partial-case or the multi-case active pattern will be best
suited for extracting the data out of the document; the decision between the two will rest on whether
the F# programmer believes they know the full set of data types that the document contains.

This is not a casually discarded decision — XML documents are often used where a certain amount
of ambiguity in the data is expected or desired. Yet, much of the XML sent back and forth between
organizations is intended to be a closed-set of data types nestled in between angle-brackets, with
unrecoverable errors thrown when an unknown XML document is received. If ambiguity is
expected or desired, then the partial-case should be considered, and if not, then the multi-case active
pattern becomes the weapon of choice.

Just for pedagogical purposes, both approaches are considered.

Multi-case Active Patterns

The multi-case active pattern requires a single function, written in “banana clips” style, which
contains all the possible atoms that the XML document can be decomposed into. For an easy

F#, XML, and Active Patterns [X331

start, consider an active pattern that breaks the document down into Node and Leaf elements,
showing the basic tree structure of a document:

let (|Node|Leaf|) (node : #System.Xml.XmlNode) =
if node.HasChildNodes then
Node (node.Name, seq { for x in node.ChildNodes -> x })
else
Leaf (node.InnerText)

Because the parameter to this active pattern can be either an xm1Node or any of its subtypes, the
type descriptor is prefixed with a "#" to indicate subtype availability (as described in Chapter 9).

Using this pattern-match rule in a pattern-match statement becomes relatively trivial, allowing us to
print the contents of any XML document in nicely indented form:

let printXml node =
‘) let rec printXml indent node =
S match node with
T reat (toxt) >
Wrox.com printfn "%s%s" indent text
| Node (name, nodes) ->
printfn "%$s%s:" indent name
nodes |> Seg.iter (printXml (indent+" ,))
printXml "" node

Code snippet XMLActivePatternDemo.fs

As might well be predicted, because the tree structure responds so well to a recursive-descent
traversal through the nodes of the tree, the outer printxml function is made up of an inner recur-
sively aware function to do the actual work, threading an “indent” string (made up of nothing but
whitespace) through the descent to give nicely formatted text printed to the console.

Of course, a breakdown of 1eafs and nodes isn’t itself useful; more useful would be to extract the
<person> elements and their children into an easy-to-use structure in F#. Given the relatively simple
structure of the <person> element, it’s easiest to imagine the data extracted as a tuple, specifically a
string * string * int * seg<string> tuple type, representing the person’s gender, name, age,
and the list of languages they speak. Extracting this via an active pattern would thus look like:

let (|Node|Leaf|Person|) (node : #System.Xml.XmlNode) =
‘) if node.Name = "person" then
: let pGender = node.Attributes.ItemOf ("gender").Value
(‘i\xm?g:i?nr let pName = node.Item("name").InnerText
Wrox.com let pAge = Int32.Parse(node.Item("age").InnerText)
let pLangNode = node.Item("languages")
let pLangs =

seq{ for 1 in pLangNode.ChildNodes -> 1.InnerText }
Person (pName, pGender, pAge, plLangs)
else if node.HasChildNodes then
Node (node.Name, seq { for x in node.ChildNodes -> x })
else
Leaf (node.InnerText)

Code snippet XMLActivePatternDemo.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

332 [XCHAPTER20 XML

This can then be used to get the various “parts” out of the XML via traditional pattern-match

construct:
let printXml node =
let rec printXml indent node =
Available for match node with
download on | Person (n, g, a, ls) ->
Wrox.com printfn "%sPerson: %s, %s, %d, speaks %d langs"

indent n g a (Seg.length 1ls)
| Leaf (text) ->
printfn "%s%s" indent text
| Node (name, nodes) ->
printfn "%$s%s:" indent name
nodes |> Seqg.iter (printXml (indent+" "))
printXml "" node
printXml xmlDoc

Code snippet XMLActivePatternDemo.fs

The Leaf clause from the pattern-match and active pattern rule can be removed if needed, but the
Node clause is going to have to stay, unless specific rules to match on the DocumentElement that
forms the root xm1Node of an Xm1Document are written. In general, it seems prudent to keep the
Node clause around, with a match that forces the recursive descent further into the tree:

let (|Node|Person|) (node : #System.Xml.XmlNode) =
\) if node.Name = "person" then
- let pGender = node.Attributes.ItemOf ("gender") .Value
mﬁgﬂgﬁ%ﬁ let pName = node.Item("name") .InnerText
Wrox.com let pAge = Int32.Parse(node.Item("age") .InnerText)
let pLangNode = node.Item("languages")
let pLangs =

seqg{ for 1 in pLangNode.ChildNodes -> 1.InnerText }
Person (pName, pGender, pAge, plangs)
else if (node.HasChildNodes) then
Node (seq { for x in node.ChildNodes -> x})
else
failwith ("Unexpected data: " + node.ToString())
let printXml node =
let rec printXml node =
match node with
| Node (nodes) ->
nodes |> Seq.iter printXml
| Person (n, g, a, ls) ->
printfn "Person: %s is %s, %d, " +
"and speaks %d languages"
n g a (Seqg.length 1s)
printXml node
printXml xmlDoc

Code snippet XMLActivePatternDemo.fs

Typically, printing to the console is only done during development and debugging — most of the
time, it is more useful to pull the data out of the XML document as a sequence of tuples or other

F#, XML, and Active Patterns [X333

strongly typed objects. This means rewriting the pattern-match itself to return a sequence of

tuples:
let extract node =
\) let rec extract node =
match node with
Available for B
download on | Person (n, g, a, ls) ->

Wrox.com Seqg.singleton (n, g, a, 1s)
| Node (nodes) ->
Seqg.collect (fun (n) -> extract n) nodes
extract node
let results = extract xmlDoc
for r in results do
Console.WriteLine("Result: {0}", r)

Code snippet XMLActivePatternDemo.fs

Of course, after a certain point, tuples may want to become fully fledged domain objects:

type Person(name : string, gender : string,
\) age : int, langs : seg<string>) =
member p.Name with get() = name
d“x:}['ﬁg;%m member p.Gender with get() = gender
Wrox.com member p.Age with get() = age
member p.Languages with get() = langs

override p.ToString() =
String.Format (" [Person: {0} is {1}, {2}," +
", and speaks {3}]",
name, gender, age.ToString(),
(Seq.reduce (fun (1) (s) ->
1+ ", and " + s) langs))

Code snippet XMLActivePatternDemo.fs

When that happens, the active-pattern rule takes that into account, returning a Person object
instead of a tuple:

let (|Node|Person|) (node : #System.Xml.XmlNode) =
\) if node.Name = "person" then
_ let pGender = node.Attributes.ItemOf ("gender") .Value
Available for let oN _ de.Tt " Wy T Text
download on et pName = node.Item("name").InnerTex
Wrox.com let pAge = Int32.Parse(node.Item("age").InnerText)
let pLangNode = node.Item("languages")
let pLangs =

seq{ for 1 in pLangNode.ChildNodes -> 1.InnerText }
Person (new Person(pName, pGender, pAge, pLangs))
else 1f (node.HasChildNodes) then
Node (seqg { for x in node.ChildNodes -> x})
else
failwith ("Unexpected data: " + node.ToString())

Code snippet XMLActivePatternDemo.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

334 [XCHAPTER20 XML

which in turn makes the transformation from XML to a sequence of domain objects just a bit

different:
let extract node =
\) let rec extract node =
match node with
Available for N
download on | Person (p) ->

Wrox.com Seq.singleton p
| Node (nodes) ->
Seqg.collect (fun (n) -> extract n) nodes
extract node
let results = extract xmlDoc
for r in results do
Console.WriteLine("Result: {0}", r)

Code snippet XMLActivePatternDemo.fs

The results of the extract function will be a seg<Person>, which is about as straightforward an
extraction result as the F# programmer could want. Things get a tad more interesting (thanks

to F#’s type-inference) when more than one domain object can appear in the XML; the F# type-
inferencer right now assumes that extract produces a sequence of Person objects out of the XML
document. If a new domain type is introduced into the system, such as:

type Ship(name : string, jumpCapable : bool) =
\) member s.Name with get() = name
member s.Jump with get() = jumpCapable
Available for : ; _
download on overr1d§ s.ToString () = .
Wrox.com String.Format (" [Ship: {0}, jump={1}1",

name, jumpCapable.ToString())

Code snippet XMLActivePatternDemo.fs

then extracting it from the XML is ridiculously simple, as we’d hope:

let (|Node|Person|Ship|) (node : #System.Xml.XmlNode) =
\) if node.Name = "person" then
let pGender = node.Attributes.ItemOf ("gender") .Value
s:l’:'img;%':; let pName = node.Item("name").InnerText
Wrox.com let pAge = Int32.Parse(node.Item("age") .InnerText)
let pLangNode = node.Item("languages")
let pLangs =

seqg{ for 1 in pLangNode.ChildNodes -> 1l.InnerText }
Person (new Person (pName, pGender, pAge, pLangs))
else if (node.Name = "ship") then
let sName = node.Item("name").InnerText
let sJump = node.Attributes.ItemOf ("jump") .Value
Ship (new Ship (sName,
if sJump="true" then true else false))
else if (node.HasChildNodes) then
Node (seq { for x in node.ChildNodes -> x})
else
failwith ("Unexpected data: " + node.ToString())

Code snippet XMLActivePatternDemo.fs

F#, XML, and Active Patterns [X335

But the pattern-match rule has to change slightly; if the Ship clause is simply inserted into the pat-
tern-match, the compiler complains:

let extract node =
‘) let rec extract node =
: match node with
it eerson (51 >
Wrox.com Seq.singleton p
| Ship (s) ->

Seq.singleton s
| Node (nodes) ->
Seqg.collect (fun (n) -> extract n) nodes
extract node
let results = extract xmlDoc
for r in results do
Console.WriteLine("Result: {0}", 1)

Code snippet XMLActivePatternDemo.fs

specifically, that the ship clause doesn’t return a Person object. This is because the type-inferencer
in F# has assumed that the extract function wants to take in an xm1Node and return a sequence of
Person objects, which obviously the ship object isn’t. If ship inherits from Person, then obviously
the compiler will be OK with this, but as written right now, ship doesn’t.

Fortunately, ship and Person do both inherit from a common base class, System.0Object, so it’s
simply a matter of telling the F# compiler this, doing the upcast from the domain object to System
.Object during the pattern-match, and asking the compiler to see the result as a sequence of object
rather than a sequence of Person:

let extract node : seg<obj> =
‘) let rec extract node : seg<obj> =
match node with
Available for : _
download on | ship (s) -> .
Wrox.com Seqg.singleton (s :> obj)

| Person (p) ->
Seq.singleton (p :> obj)
| Node (nodes) ->
Seg.collect (fun (n) -> extract n) nodes
extract node
let results = extract xmlDoc
for r in results do
Console.WriteLine("Result: {0}", r)

Code snippet XMLActivePatternDemo.fs

And now, any number of domain types can be added to the active pattern rule and returned from
the extract function.

Unfortunately, the drawback to the multi-case solution comes when the upstream source of the
XML document throws something “new” into the XML stream. Not that clients would actu-
ally ever do that, of course, but still, a more robust solution would allow for a certain amount of
forgiveness.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

336 [XCHAPTER20 XML

Partial-Case Active Patterns

Operating on a slightly different XML example from before, we can introduce some “unknown”
structure into the XML document that is to be parsed and extracted into domain objects:

<data>
<item>

<person gender="male">

ﬁxm?g;% 'g; <name>Ted Neward</name>
Wrox.com <age>38</age>

<languages>
<language>English</language>
<language>French</language>
<language>C#</language>
<language>Java</language>
<language>F#</language>
<language>Scala</language>
</languages>
</person>
</item>
<item>
<person gender="male">
<name>Han Solo</name>
<age>35</age>
<languages>
<language>Imperial Standard</language>
<language>Wookiee</language>
</languages>
</person>
</item>
<ship jump="true">
<name>Millenium Falcon</name>
</ship>
<fairyTalePrincess>
<name>Sleeping Beauty</name>
<ending>Happy</ending>
</fairyTalePrincess>
<fairyTalePrincess>
<name>Cinderella</name>
<ending>Happy</ending>
</fairyTalePrincess>
<item>
<person gender="male">
<name>Gaius Baltar</name>
<age>35</age>
<languages>
<language>English</language>
<language>Cylon</language>
</languages>
</person>
</item>

F#, XML, and Active Patterns [X337

<ship jump="true">
<name>Galactica</name>
</ship>
</data>

Code snippet XMLActiveExample2.xml

Where’d those fairyTalePrincess elements come from? Clearly, as the children’s television show
implied, they are the “one of these things that doesn’t belong,” but what can we do? Clients some-
times don’t send the data that is expected.

The partial-case active pattern requires a function for each “thing” that the XML might be
extracted into, with a wildcard at the end of the name to indicate that this might not always suc-
ceed, and this is where the partial-match will be of better benefit. Because the partial-match pattern
doesn’t assume that it has all the possible cases the source (the XML node) can extract into, it will
neatly and efficiently bypass any source that it doesn’t understand.

To start, create the partial-match active pattern rules for the two types we do know about, Person
and Ship:

if node.Name = "person" then
: let pGender = node.Attributes.ItemOf ("gender") .Value
d“xe\"[']“;g;%%’; let pName = node.Item("name").InnerText
Wrox.com let pAge = Int32.Parse(node.Item("age").InnerText)
let pLangNode = node.Item("languages")
let pLangs =
seq{ for 1 in pLangNode.ChildNodes -> 1.InnerText }
Some (new Person (pName, pGender, pAge, pLangs))
else
None

! let (|Person|_|) (node : #System.Xml.XmlNode) =

let (|Ship|_|) (node : #System.Xml.XmlNode) =
if (node.Name = "ship") then
let sName = node.Item("name").InnerText
let sJump = node.Attributes.ItemOf ("jump") .Value
Some (new Ship (sName,
if sJump="true" then true else false))
else
None

Code snippet XMLActivePatternDemo.fs

Bear in mind, again, that the partial-match must yield an Option type, either Some<T> or None,
from each rule. Other than that, the partial-match rules for extracting the domain objects out of the
XML document are remarkably similar to the ones used for the multi-case match. This is actually
comforting — it means that refactoring from one style to the other will be relatively trivial.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

338

[XCHAPTER 20 XML

J

Still present is the problem of the nodes that the code will hit before the person or ship elements and
the unrecognized elements like fairyTalePrincess. These are covered in the pattern-match itself:
let extract node : seg<obj> =

let rec extract node : seg<obj> =
match node with

Available for . -
download on | ship (S). > .
Wrox.com Seqg.singleton (s :> obj)

O

| Person (p) ->
Seqg.singleton (p :> obj)

| node when node.HasChildNodes ->
let children = seqg{ for n in node.ChildNodes -> n }
Seg.collect (fun (n) -> extract n) children

| _ —>
Seq.empty

extract node

Code snippet XMLActivePatternDemo.fs

Again, we just have to help the F# compiler along just a little bit by defining the returned sequence
to be a sequence of Objects. And rather than creating an explicit partial-match rule for Node objects,
which really isn’t a data type we’re trying to work with, it’s easier in this case to use a pattern guard
to determine if the node has any child objects, and if so, just walk through each of those and recur-
sively call extract on them. And, the stunning coup de grace, if the node doesn’t match any of these
three conditions, an empty sequence can be returned.

Later, if there is an element that is known to be ignorable — that is, one for which it can be stated
with certainty that it has nothing of interest to us, the parser can recognize that element and use it
as a signal to prune the XML hierarchy that is being parsed:

let extract node : seg<obj> =

let rec extract node : seg<obj> =
match node with

Available for | ship (s) ->
download on : j
Wrox.com Seq.singleton (s :> obj)

| Person (p) ->
Seqg.singleton (p :> obj)

| node when node.HasChildNodes ->
let children = seqg{ for n in node.ChildNodes -> n }
Seg.collect (fun (n) -> extract n) children

| node when node.Name = "fairyTalePrincess" ->
Seq.empty

| _ ->
Seq.empty

extract node

Code snippet XMLActivePatternDemo.fs

This will prevent the traversal of the nodes underneath the fairyTalePrincess element and save a
few matches and recursive calls. For a small element like fairyTalePrincess, it won’t make a huge
difference; in a multi-megabyte XML document consisting of elements of hundreds of child elements
long, it will.

Summary [X339

Regardless of whether the partial-case or multi-case approach is used, the net result is a relatively
easy, scalable way to parse XML documents and extract the data into strongly type domain objects
for further processing:

let results = extract xmlDoc

for r in results do
Console.WriteLine("Result: {0}", 1)

And because the results of the extracting are a sequence of strongly typed objects, we could use
pattern-matching again to walk through the sequence and do something more meaningful with the
objects contained therein:

let results = extract xmlDoc

\) for r in results do

S Console.WriteLine("Result: {0}", r)
Available for match r with
download on ,

Wrox.com | :? Ship as s ->

Console.WriteLine("The ship {0} {1}",
s.Name,

if s.Jump = true
then "is jump-capable"
else "is slower-than-light")
:? Person as p ->
Console.WriteLine("Found {0}", p.Name)

Code snippet XMLActivePatternDemo.fs

Regardless of what work needs to be done, the active patterns feature of F# allows for some easily

read and easily maintained code.

SUMMARY

In this chapter, we have covered how you deal with XML using F# employing two of the most com-
mon methods that F# programmers will use, LINQ-to-XML and XML DOM. LINQ-to-XML
approaches that eschew XPath can certainly work; however, XPath, especially if others you are
working with understand XPath, tends to produce more concise queries. Which you use is a matter
of choice that is made most commonly by the group you are working with, any organizational stan-
dards you might have, or lacking any of those constrains, personal preference.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

21

ASP.NET MVC

WHAT'’S IN THIS CHAPTER?

Building websites
Integrating C# views with F# controllers and models

Keeping concerns properly separated

@ © o ©

Understanding the MVC pattern applied to F#

While F# is a strong contender in many areas of the development stack, it has not been tra-
ditionally thought of as a great candidate for development of code on the UI layer. This is
especially true for platforms like WinForms, which promote a sense of statefulness that flows
through not just the U, but through the object model that a UI might be bound to. Most

UI technologies of the WinForm era (including ASP.NET WebForms) are tied to the idea of
mutating control objects as a core mechanism by which you promote interaction between a
presentation object (MVP pattern) or ViewModel (MVVM pattern), and mutable UTI objects
(like controls with a .Text property). For such a stateful model, F# is merely an average OO
language on the .NET framework, with no real compelling application besides being yet
another language option.

For other models, however, that depend less on state maintenance — such as MVC frame-
works — F# is far more compelling. In this chapter, you learn how to use F# with the
ASP.NET MVC framework. We demonstrate an example of writing an ASP.NET MVC
application that demonstrates how to use F# to simplify web development.

OVERVIEW

It is not that controversial to say that ASP.NET WebForms was designed in a manner to make
web development “safe” for programmers from the world of Windows development, with
events tied to controls where processing happens on the server. Unfortunately, this attempt at

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

342 [XCHAPTER21 ASPNETMVC

abstraction is a great example of what Joel Spolsky calls a “leaky abstraction” (http: //www
.joelonsoftware.com/articles/LeakyAbstractions.html). That is, despite how hard we try
to hide that development is being done over the Web, the latency between, say, a user’s click on
the client side, and the response handled on the server side, means that most developers end up
worrying about concerns related to the detail that the framework tries to abstract away.

Put another way, we don’t have to do much coding in ASP.NET WebForms before Requests,
Responses, and plumbing that makes web programming actually work rear their heads. There is
little you can do in ASP.NET WebForms without having to realize that the application is on the
Web. The abstraction of a window with click events breaks down very quickly!

ASP.NET MVC grew from a premise that developers are better off admitting that web apps are
best thought of as the HTTP-based services they actually are, rather than as an abstraction of

a programming model designed for a very different set of assumptions. It does not hurt that the
framework is designed with testability in mind. However, this moving from a stateful model to a
service-based model has other important ramifications to the F# programmer.

As is covered in Chapter 23, F# is a great language for service development. ASP.NET MVC is
merely a more complex type of service that, rather than serving up JSON or XML, serves up HTML
based on a HTTP request. In this chapter, we demonstrate writing a completely stateless application
using F# and the ASP.NET MVC Framework.

FORECAST’'R — THE WORLD'’S SIMPLEST WEATHER
FORECAST SITE

To demonstrate this, this chapter builds on the weather example started with Chapter 20 to build
out a website that implements the following user story:

As a human, to quickly determine whether I should wear a light jacket, a parka,
a raincoat, a bikini, or in the case of a forecasted Zombie takeover, body armor. 1
want to know what weather to expect.

To build this out, the following steps apply:

Build out a domain that models a weather forecast.

© Create a repository that can populate the domain.
© Build a controller that provides a means for an outside service to access the domain.
o

Add an ASP.NET MVC website that leverages the controller and makes the system usable by
humans.

To get started, I encourage you to become familiar with the project setup steps described by Tomas
Petricek on his blog: http://tomasp.net/blog/fsharp-mvc-web.aspx. This setup explains how
to set up an F#/C# hybrid project that uses C# for views but F# for everything else.

FORECAST’'R — The World’s Simplest Weather Forecast Site [X343

Modeling the Domain

If we are going to have a weather forecasting site, it will probably need to have a model that covers
different types of possible weather. Such a model might start as follows:

‘) namespace FSharpBook.Models
type SkyType =

Available for | sunny

download on | Overcast

Wrox.com | PartlyCloudy

| Snow

| Rain

| Hurricane

| Zombies

Code snippet ForecastModel.fs

SkyType is a discriminated union that represents different types of weather that are possible. Others
may be added, but this is a good initial list that allows a developer to know whether a parka is
needed. Others could be added (that is, Part1lySunny, Showers, and so on), but the current set
should be enough for a really simple site.

Of course, it is not enough just to give an indication of temperature, knowing just because it is
sunny, it does not mean that a coat isn’t needed. Without a temperature, it could be sunny, but a
bone chilling -30 degrees outside! It would also be useful to know the location of our forecast, in
case the user entered Paris, but got Paris, Texas instead of Paris, France. The following is added to
the same ﬁle, ForecastModel. fs:

type Forecast = { Location:string; AverageTemperature:double; Skies:SkyType }

To implement a simple forecast model as asked for in the user story, a simple record type with a
Location, AverageTemperature, and Skies — will determine whether it will be wet and how cold
or hot it will be.

Of course, something is needed that will provide a means to get a forecast. For that, a repository
should be created from which forecast information can be obtained.

It isn’t just what the model does, but it is also what the model does not do. It is not doing any work
to retrieve actual forecast data from outside sources — that is a concern for the repository. Nor
does it care about how anything is rendered — that is a concern for the view — not the model. The
only things that belong in the model are considerations about how it is going to internally represent
weather, and any behavior that might be added. For example, behavior can be added to Forecast
that allows it to return something that specifies what kind of attire should be worn. Assume the fol-
lowing choices of attire the user might be interested in wearing:

type Attire =
| Bikini

Available for | Normal
download on | LightJacket
Wrox.com

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

344 [XCHAPTER21 ASPNETMVC

Coat
Raincoat
Parka
BodyArmor

Code snippet ForecastModel.fs

The definition for Attire is a discriminated union, much like the definition for skyType. Given the
above attire, it would be useful to add behavior to specify what kind of attire should be worn in dif-
ferent weather conditions. Such a specification may look like this:

type Forecast with
‘) member forecast.ToAttire() =
: match forecast.AverageTemperature, forecast.Skies with
ﬁﬁgﬂgﬁ%ﬁ | temp,sky when temp > 75.0 && sky = Sunny || sky = PartlyCloudy -> Bikini
Wrox.com | temp,sky when temp > 65.0 && sky = Sunny || sky = PartlyCloudy -> Normal

| temp,sky when
temp > 45.0 && sky = Sunny || sky = PartlyCloudy -> LightJacket
| _,Rain -> Raincoat
| temp when temp < 20.0 -> Parka
| _,Hurricane -> Coat
| _,Snow -> Parka
| _,Zombies -> BodyArmor
| _ -> Coat //when in doubt, wear a coat...

Code snippet ForecastModel.fs

A conversion from a Forecast to Attire is based on mapping the appropriate AverageTemperature
and skies combinations to the appropriate Attire. So in a case where there are temperatures over 75
and at least PartlyCloudy skies, the recommendation will be Bikini. There are various other recom-
mendations, including Bodyarmor in the event of Zombies.

Note the reopening the Forecast type later on in the model definition, in this case, to add new
behavior. This is not that uncommon in F#, as frequently, a method needs to be added that uses a
type that was not known earlier because of sequential evaluation. (Remember, types can’t be used
prior to being defined.)

For a simple website that models a weather forecast and attire recommendations, this is certainly a
good model to start with. With this in place, the next phase is to move on to implementation of a
repository from where a forecast can be retrieved.

Creating a Repository

A repository is generally considered a source for information that can be used to populate a domain.
In many applications, a repository can take the form of a relational database, such as Postgres, MS
SQL Server, or Oracle. CouchDB, MongoDB, db4o, among others, are also great candidates for
repositories.

Whatever technology is chosen, the domain objects should never have a need to be aware of it. That
is, they should be persistence ignoranant. This is especially important given the increasing rate of

FORECAST’R — The World’s Simplest Weather Forecast Site [X345

innovation in the world of storage and the increasing likelihood you may want to swap out, say, a
SQL Server repository at some point for one based on a technology more oriented toward the cloud
in the future.

In this case, however, there is no need for traditional data storage. The simple “Forecast’R” site
merely uses various Yahoo APIs to gather weather and location information. The signature for the
repository method is as follows:

open System
open System.Xml.Ling

d“;ﬂ?g;%m open FSharpBook.Models

Wrox.com

! namespace FSharpBook.Repositories

type YahooForecastRepository () =
static member GetForecastByLocation locationName =

Code snippet ForecastRepository.fs

Retrieval of “Where On Earth ID”s

The goal, of course, is to retrieve a single forecast based on a name of a location. Chapter 20 pro-
vided a means to gather information from a weather forecast based on a Yahoo “Where On Earth
ID” (WOEID), but only a specific number for that ID as provided to keep things simple. However,
this application is going to need to get such an ID, based on a textual location query, to be of much
use. Thus, this first line in the repository routine:

let yahooWhereOnEarthIds
= YahooForecastRepository.GetWhereOnEarthIdsByLocation locationName

For more about Yahoo “Where On Earth ID”s, please visit developer.yahoo.com/geo/
geoplanet/.

This routine will be expected to return one or more “Where On Earth ID”s. In this case, it is imple-
mented as a static member of the repository, because the repository has no state of its own. The
implementation is as follows:

static member GetWhereOnEarthIdsByLocation locationName =
‘) //visit http://developer.yahoo.com/geo/geoplanet/ to get your
// own appIld
Available for let g = v
download on e~ app .
Wrox.com let yahooUrlLocationLookup

= sprintf "http://where.yahooapis.com/vl/places.q('%s')?appid=%s"
locationName appId
let locationsDoc = yahooUrlLocationLookup |> XDocument.Load
let yahooWhereOnEarthIds =
locationsDoc.Descendants ()

|> Seg.filter (fun e -> e.Name.LocalName = "woeid")
\> Seqg.map (fun e -> e.Value \> Int32.Parse)
yahooWhereOnEarthIds

Code snippet ForecastRepository.fs

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

346 [XCHAPTER21 ASPNETMVC

The Yahoo Geoplanet AP, as of time of writing, works by passing a simple HTTP GET to a specific
URL. For example, if one wanted to find a WOEID for New Jersey, issue an HTTP GET request to
the following:

http://where.yahooapis.com/vl/places.q('New Jersey') ?appid=YourAppID

In this example, replace YourappID with your ID provisioned by the Yahoo Geoplanet service.

What is returned is XML content that has a lot of information about New Jersey. The requirement,
however, is to ignore most of this information and simply return a set of integers related to the
“Where On Earth ID”s in the response. The file itself contains a set of elements with the local name
woeid, each of which (there may be more than one) contains the integer of interest. After filtering by
the LocalName, and then parsing into an Int32, a sequence of “Where On Earth ID”s related to the
location is returned.

From “Where On Earth ID”s to Weather Content

The next four lines of the main repository routine allow retrieval of the specific document that
relates to the first “Where On Earth ID” returned from GetWhereOnEarthIdsByLocation:

let yahooWhereOnEarthIds
: = YahooForecastRepository.GetWhereOnEarthIdsByLocation locationName
s:]’m?g;%':; let getForecastDoc id =
Wrox.com let yahooWeatherRSSUrl =
sprintf "http://weather.yahooapis.com/forecastrss?w=%d" id
yahooWeatherRSSUrl |> XDocument.Load
let weatherDoc = yahooWhereOnEarthIds |> Seq.head |> getForecastDoc

! static member GetForecastByLocation locationName =

Code snippet ForecastRepository.fs

The first step is to implement a function scoped to GetForecastByLocation called getForecast-
Doc. It takes an id, expected to be an integer that refers to a “Where On Earth ID”. The next step is to
compose a URL by combining the public Yahoo Weather forecast RSS URL template with the “Where
On Earth ID”. Next, pass the composed URL to XDocument . Load, which provides the Yahoo Weather
content related to the given “Where On Earth ID”.

The last line is where the function is called that was defined on the previous three lines. Starting
with a sequence of “Where On Earth ID”s, the top one is taken (making an executive decision that
the first result is the one the user most likely wanted), and it is passed to the getForecastboc func-
tion, with the result being an XDocument with the weather information that can be used to populate
a forecast domain.

Digging Out the Content

The next set of lines of the routine use skills developed in Chapter 20 to dig into the content and
find information about the weather:

FORECAST’'R — The World’s Simplest Weather Forecast Site [X347

\) let firstLocationElement (elems:seg<XElement>) =
elems |> Seqg.filter (fun(e) -> e.Name.LocalName = "location") |> Seg.head
Available for let locationNameFromElement (elem:XElement) =
dmg;“gg"‘:" XmlHelpers.getAttr elem "city"
+ ", " + XmlHelpers.getAttr elem "region"
+ ", " + XmlHelpers.getAttr elem "country"

let currentConditions (elems:seg<XElement>) =
let findFirstConditionElement (elems:seg<XElement>) =
elems |>
Seqg.filter (fun(e) -> e.Name.LocalName = "condition") |> Seg.head
let forecastText
= XmlHelpers.getAttr (elems |> findFirstConditionElement) "text"
forecastText |> YahooForecastRepository.ForecastTextToSkyType
let averageTemperatures (elems:seg<XElement>) =
elems
\> Seg.map (fun(e) -> e.Attributes())
|> Seq.concat
|> Seqg.filter (
fun(a) -> a.Name.LocalName = "low" || a.Name.LocalName = "high")
\> Seqg.map (fun(a) -> a.Value |> Double.Parse)
|> Seg.average

Code snippet ForecastRepository.fs

To populate the domain, the location name is needed that the search resolved to, the current condi-
tions specified, and the average temperature. The preceding lines use Ling to XML to gather the
required information.

The only real interesting thing being done here, from a domain standpoint, is that the raw text pro-
vided by the API is converted into the domain language for weather. This conversion goes through
YahooForecastRepository.ForecastTextToSkyType:

when t.Contains "Hurricane"

|| t.Contains "Tropical Storm" -> SkyType.Hurricane
\ t when t.Contains "Overcast" -> SkyType.Overcast
-> SkyType.Zombies

static member private ForecastTextToSkyType (text:string) =
‘) match text with

| t when t.Contains "Partly Cloudy" -> SkyType.PartlyCloudy
Available for | t when t.Contains "Rain" -> SkyType.Rain
download on .
Wrox.com | t when t.Contains "Snow" -> SkyType.Snow

| t t

t

Code snippet ForecastRepository.fs

This allows for conversion of an arbitrary string into a given skyType that ultimately becomes the
basis for the attire recommendation. This example starts with a small number of mappings that
provide a good starting point. Inclusion of this in the repository is a choice made here because this
particular mapping is likely specific to this repository. Other repositories (say, some foreign language
weather service), may have different terms that represent different skyType values.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

348 [XCHAPTER21 ASPNETMVC

Returning the Weather Result

Of course, a great deal of setup and parsing routines have already been done, setting up the condi-
tions needed for the following:

static member GetForecastByLocation locationName =
\) let yahooWhereOnEarthIds =
: YahooForecastRepository.GetWhereOnEarthIdsByLocation locationName
mﬁgﬂgﬁ%ﬁ let getForecastDoc id =
Wrox.com let yahooWeatherRSSUrl = sprintf
"http://weather.yahooapis.com/forecastrss?w=%d" id
yahooWeatherRSSUrl |> XDocument.Load
let weatherDoc = yahooWhereOnEarthIds |> Seqg.head |> getForecastDoc
let firstLocationElement (elems:seg<XElement>) =
elems |> Seq.filter (fun(e) -> e.Name.LocalName = "location") |> Seg.head
let locationNameFromElement (elem:XElement) =
XmlHelpers.getAttr elem "city"
+ ", " + XmlHelpers.getAttr elem "region"
+ ", " + XmlHelpers.getAttr elem "country"
let currentConditions (elems:seg<XElement>) =
let findFirstConditionElement (elems:seg<XElement>) =
elems |>
Seqg.filter (fun(e) -> e.Name.LocalName = "condition") |> Seq.head
let forecastText =
XmlHelpers.getAttr (elems |> findFirstConditionElement) "text"
forecastText |> YahooForecastRepository.ForecastTextToSkyType
let averageTemperatures (elems:seg<XElement>) =
elems
|> Seqg.collect (fun(e) -> e.Attributes())
|> Seqg.filter
(fun(a) -> a.Name.LocalName = "low" || a.Name.LocalName = "high")
|> Seqg.map (fun(a) -> a.Value |> Double.Parse)
|> Seq.average
let convertDocToForecastModel (doc:XDocument) =
{
Location = doc.Descendants()
|> firstLocationElement
|> locationNameFromElement;
AverageTemperature = doc.Descendants() |> averageTemperatures;
Skies = doc.Descendants() |> currentConditions

}

weatherDoc |> convertDocToForecastModel

Code snippet ForecastRepository.fs

These last lines provide a function for conversion of an xDocument from the Yahoo Weather API
into a domain model for Weather. The function convertDocToForecastModel is a composition of
other functions that have been defined. The last line simply passes the actual document to the func-
tion, so the actual result can be returned.

It is important to note that this repository is fairly complex compared to many repository implemen-
tations we may write. More typical repositories might be based on more traditional database code,
as is demonstrated in Chapter 19.

FORECAST’'R — The World’s Simplest Weather Forecast Site [X349

Creating the Controller

When a domain is set up and a repository has been written that is capable of populating a domain,
the next step is to implement a means to connect the domain to something more interesting. In the
ASP.NET MVC framework that takes the form of a controller. The controller is, to put it simply, a
means for a domain to be exposed to the outside world, typically a view somewhere.

A good way to think about a controller is to think about how a user somewhere may interact, logi-
cally, with the application. A simple site for viewing a forecast will definitely need an Index page,
which likely has instructions on it, and perhaps a box where someone can enter a query. Certainly
something will be needed to handle the query. It would probably also be a wise idea to have a page
that shows a result somewhere — one that is preferably a result from the aforementioned query.

Setting Up the Controller

Start a controller by adding a file, perhaps controllers. fs, and adding the following code:

open System.Web.Mvc
open FSharpBook.Models
Availablefor ~ open FSharpBook.Repositories

dow\mtggl:n open System.Web.Routing

namespace FSharpBook.Controllers

[<HandleError>]
type ForecastController() =
inherit Controller ()

Code snippet Controllers.fs

By convention, all controller classes in ASP.NET MVC end in the word controller. The part of
the name before controller, Forecast in this case, will become the name of the controller that
is used by the view logic when mapping routes to controllers. The controller should be aware of
the domain (in FSharpBook.Models), as well as the repositories (in FSharpBook.Repositories).
The initial implementation will use concrete versions of those classes, though it is certainly pos-
sible (and ultimately desirable!) to use dependency injection to map controllers to a domain and a
repository.

Of course, it is worth noting that the class derives from controller, which provides it with a

good deal of default controller functionality out of the box that will be used as this sample site is
built.

The Index Action

The index page, frankly, will not do much. It is expected to probably have some text on it, and per-
haps a form that might take in some information. However, neither the controller nor the actions
defined in a controller care much about that form. What the form actually contains is a responsibil-
ity of the view. It is known that the index page displays the same thing, no matter who or what is
using it. The index is defined as follows within the forecastController:

member forecastController.Index() =
forecastController.View()

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

350 [XCHAPTER21 ASPNETMVC

The preceding code dictates that when the Tndex is asked for, provide a default view for that index.
Note that the member must always have the () attached to indicate to the framework that will call
the routine that there are zero parameters — as while it is common to leave off the parens in pure F#
programs, the framework expects that the signature be a proper zero parameter member and will
not map properly without the parens.

The DoQuery Action

Of course, it would be useful to actually have some code that does something. The submit action,
the second written in this example, will perform that role.

When the form is submitted, be it by the Tndex page, or in theory, any other page that has a form
that posts to the submit action of the Forecast controller, something useful needs to be done with
it. There are a couple of options. One naive approach many use is to simply do the work right on the
submit action, returning a view that renders the forecast. Although this approach is simple, it causes
the great annoyance of the type of message shown in Figure 21-1.

FIGURE 21-1

To get around this, the form processor is going to implement what is often called the PRG Pattern.
PRG stands for Post, Redirect, and Get. This has a couple of advantages — one of which is that it
gets away from having the browser complain that it is going to need to re-post the form. Another
though, and probably more compelling than that, is that it allows separation of form processing
from the view rendering that is the result of that processing. The code to implement a PRG pattern is
actually quite simple:

member forecastController.Submit (locationQuery:string) =

let rvd = new RouteValueDictionary ()

rvd.Add ("locationQuery", locationQuery)
forecastController.RedirectToAction("for", "forecast", rvd)

A forecast controller always takes a locationQuery as a parameter. This may be a form field from
some form that posted to this page, but how it looked on such a form does not really matter to the
controller — the controller just needs to know that by the time this routine is called, something
mapped it in properly. What is needed is to create a redirect to the controller and action that is actu-
ally going to render the result.

One technique to do that is to create a RoutevalueDictionary object that has the parameter.

The first two lines of the method that create the dictionary and add the item accomplish that

goal. The third line is a call to RedirectToAction, a method on the controller base class that
knows how to redirect a new GET request based on an action, a controller name, and optionally, a
RouteValueDictionary that holds the parameters.

FORECAST’'R — The World’s Simplest Weather Forecast Site [X351

The For Action

The last action is named For, as it helps when visualizing a URL that might read /Forecast/
For?someQuery. The job of For is to actually render the forecast the user is interested in. As it turns
out, the method to do so is actually pretty tame:

member forecastController.For (locationQuery:string) =
locationQuery
|> YahooForecastRepository.GetForecastByLocation
|> forecastController.View

Again, it is expected that locationQuery will be passed as a parameter from the view. The reposi-
tory knows how to retrieve a single forecast based on the query, so the simplest thing to do is to pipe
the query into the repository, providing the forecast. That result is then piped into a view, which
presumably is structured in such a way as to render the domain object.

Of course, there are a couple schools of thought about rendering domain objects directly on views.
It works fine for a simple case like this one, where the object is not terribly complex. However,
sometimes, one may want a less complex object than the entire domain object to be sent to a view.
Presentation objects, ViewModels, or other abstractions come to the rescue in such situations.
However, even in the presence of one of those, it belongs squarely in the domain model part of the
MVC framework, not in the Controller, lest you end up inadvertently ending up with a “fat con-
troller” that is typically a code smell that happens when one mixes domain and controller concerns.

Creating Some View Helpers

It should be noted that the view is not quite ready for implementation. There are a couple of things
that need to be done to have the domain objects render nicely in the views. The aAttire and SkyType
objects, although definitely in a nice form useful for the domain logic, do not have a reliable means
to convert to strings. Of course, we could interrogate their type and push out a string based on

that, but then there would still need to be a means to convert from something like "Part1lycloudy"
to, say, "Partly Cloudy", or perhaps if the website needed to render in Spanish, "Parcialmente
Nublado".

It would be bad practice to put such view-specific concerns in the same place as the main control-
ler or model, so to keep the concerns separate, put these in a separate area of the project called
viewHelpers. The first new file will help us render various SkyType values:

module SkyTypeRenderer

‘) open FSharpBook.Models

Available for let ToWeatherString sky =
download on :
Wrox.com match sky with
| Sunny -> "Sunny"
| Overcast -> "Overcast"
| partlyCloudy -> "Partly Cloudy"
| Snow -> "Snow"
| Rain -> "Rain"

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

352 [XCHAPTER21 ASPNETMVC

| Hurricane -> "Hurricane"
| Zombies -> "Oh NO! ZOMBIES!!!"
let ToImageFileName sky =
match sky with
| pPartlyCloudy -> "PartlyCloudy"
| Zombies -> "Zombies"
| _ -> ToWeatherString sky

Code snippet SkyTypeRenderer.fs

This first file allows us to do two view-specific things. It creates a string for each state of sky (to be
rendered in a specific view), and it maps sky types to filenames, which again, are known when deal-
ing with a specific view.

The second file will help map various attire definitions to strings:
module AttireRenderer
‘) open FSharpBook.Models
d“m}:ﬁggﬁ'g’: let ToAttir'eStriljlg attire =
Wrox.com match attire with
| Bikini -> "Bikini"
| Normal -> "Normal"
| LightJacket -> "Light Jacket"
| Coat -> "Coat"
| Raincoat -> "Raincoat"
| parka -> "Parka"
| BodyArmor -> "Body Armor"

Code snippet AttireRenderer.fs

Of course, what is being done here with these renderers, in a production system, would be best done
with locale-specific resource files, so that when a system is internationalized, such internationaliza-
tion is more easily done by swapping out the appropriate resource.

Creating the View

If everything has been done right, there should be almost no reason to have code, other than per-
haps a few very trivial binding helpers, in the view. The Holy Grail in this kind of system is a view
that lacks any code at all. That is, the view should consist of markup that is the province of the user
interface designer, and anything that such a designer would have a hard time understanding should
go in some other kind of component.

The example site has two views. It has the Tndex view that is rendered when the user goes to the
default page, and the results view (For .aspx, in this case) that shows the result. The Tndex view
(Index.aspx) is very simple:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
‘) Inherits="System.Web.Mvc.ViewPage" %>
Available for gl i _nm " _n "
download on <asp:Content ID="titleContent" ContentPlaceHolderID="TitleContent" runat="server">
Wrox.com Forecastr - The simplest weather forecast system in the Universe!

</asp:Content>

FORECAST'R — The World’s Simplest Weather Forecast Site [X353

<asp:Content ID="mainContent" ContentPlaceHolderID="MainContent" runat="server">
<div id="queryText">
<% using (Html.BeginForm("DoQuery", "forecast", FormMethod.Post)) {%>
I want to know the weather forecast for:
<%= Html.TextBox ("LocationQuery") %>
<input type="submit" value="Get Forecast" />
<% } %>

</div>

</asp:Content>

Code snippet Views/Forecast/Index.aspx

It is notable that what little code is here is written in C#, not F#. Although it may be possible to get
markup to work in F#, doing so requires a lot of work with web.config files and certainly does not
work easily out-of-the-box as of the time of writing. Given the intent is to minimize code in the view
anyway, in this case, a decision is made to keep view-only code in C# — but do as little as possible.

The code that is here, frankly, does very little. Simple helpers are being used from the framework

to generate some html code. Html .BeginForm is a framework helper function for spitting out form
elements; Htm1 . TextBox does the same for Tnput elements that represent text boxes. The only thing
that really needs to be done here is to specify a controller that should be posted to, as well as an
intended action. We could just as easily write:

<form action="/forecast/DoQuery" method="post">

Of course, the benefit received in using the helper is that it can provide some help in making sure
the output is correct, because the preceding code might not be correct if we were in a situation

that involved writing a site that ran from a virtual directory. That said, there may be cases where a
designer will want more control over the output and will opt for writing the raw html. Given that
the only responsibility of the html helper is to spit out appropriately formatted html, having an html
designer hand-code it would not break the site.

The code for the Forecast view is a slightly bit more complex, but not horribly so:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
‘) Inherits="System.Web.Mvc.ViewPage" %>
<%@ Import Namespace="FSharpBook" %>
Available for <%@ Import Namespace="FSharpBook.Models" %>
download on
Wrox.com
<asp:Content ID="titleContent" ContentPlaceHolderID="TitleContent" runat="server">
<%
var forecastModel = (Forecast) ViewData.Model;
%>

Forecast for <%= forecastModel.Location %>
</asp:Content>

<asp:Content ID="mainContent" ContentPlaceHolderID="MainContent" runat="server">

<%
var forecastModel = (Forecast) ViewData.Model;
%>
<table><tr>
<td>

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

354 [XCHAPTER21 ASPNETMVC

<div id="weatherIcon">
<img src="../../Content/<%=
SkyTypeRenderer.ToImageFileName (forecastModel.Skies) %>.gif" alt="<%=
SkyTypeRenderer .ToWeatherString (forecastModel.Skies) %> Graphic" />
</div>
<div id="weatherText">
<%= SkyTypeRenderer.ToWeatherString (forecastModel.Skies) %>
</div>
</td>
<td>
<div id="weatherIntroText">We are forecasting that the weather in <%=
forecastModel.Location %> will be:</div>
<div id="averageTemperatureDisplay">
<%= forecastModel.AverageTemperature %> degrees with <%=
SkyTypeRenderer . ToWeatherString (forecastModel.Skies) %>
</div>
Consider wearing <%= AttireRenderer.ToAttireString(forecastModel.ToAttire()) %>
</td>
</tr></table>
<%= Html.ActionLink("Back to Index", "Index", "Forecast") %>
</asp:Content>

Code snippet Views/Forecast/For.aspx

Again, this is being done in C#, but doing so using the minimum of executable code. Starting with
the title part of the page, it starts off with a user friendly title so that when the end user has multiple
browser windows open, they will know which one is the Forecast page. ViewData.Model carries
an object that represents the thing that the page should bind to. In this case, to make this work a
strongly typed reference to the model is useful:

<%

var forecastModel = (Forecast) ViewData.Model;
%>

This allows the following snippet that sets the title text to be written:
Forecast for <%= forecastModel.Location %>

The body of the page is a little more work. Note that each page content area, delimited by
<asp:Content> tags, has independent scope, so it is necessary to put in a strongly typed declaration
for forecastModel again:

A
o

var forecastModel = (Forecast) ViewData.Model;

oe
\

The first bit of code that is encountered is for the icon used to display the weather. The view helper
has a routine to provide the name of a file. The page is going to leverage that to provide the html
that will be used to show the image:

<div id="weatherIcon">
<img src="../../Content/<%=
SkyTypeRenderer.ToImageFileName (forecastModel.Skies) %>.gif" alt="<%=
SkyTypeRenderer.ToWeatherString (forecastModel.Skies) %> Graphic" />
</div>

Summary [X355

In this case, the code is appending the string for the image file to the Content path and then add-
ing .gif at the end. Like all good web citizens, the site provides alt text as well that leverages the
ToWeatherString method that was written in the view helper so that the site has a text representa-
tion of the image as well.

The same code will be used to generate alt text for the weather headline:

<div id="weatherText">
<%= SkyTypeRenderer.ToWeatherString (forecastModel.Skies) %>
</div>

Again, the page is using the skyTypeRenderer to translate from a logical type of weather repre-
sented by forecastModel.Skies to the actual string the page should use for rendering.

The next couple sections follow the same pattern:

<div id="weatherIntroText">We are forecasting that the weather in <%=
‘) forecastModel.Location %> will be:</div>
<div id="averageTemperatureDisplay">
d“;e:['ﬁg;%m <%= forecastModel.AverageTemperature %> degrees with <%=
Wrox.com SkyTypeRenderer.ToWeatherString (forecastModel.Skies) %>
</div>

Code snippet Views/Forecast/For.aspx

The last section is where a clothing recommendation is made. Again, the logic is not terribly com-
plex; just render the model:

Consider wearing <%= AttireRenderer.ToAttireString(forecastModel.ToAttire()) %>

If the view is much more complex than this, say, rendering a simple domain model, it might be
advisable to write a ViewModel — and some classes to convert from the more complex domain to a
ViewModel so that the chance of that complex logic getting added to the view is minimized. Code
that goes in views tends to not be reused and tends to allow concerns that are not specific to a par-
ticular view to leak into views, leading to duplication and difficult maintenance.

SUMMARY

In this chapter, we learned how to leverage F# in our ASP.NET MVC applications — and in so doing,
use F# and the fact that F# discourages mutation to our advantage in building a simple yet robust
website. One of the striking things you will notice in our implementation of a simple ASP.NET MVC
site is that there are zero cases where we change the value of a variable once assigned. A reality of
web development is that state across multiple requests, although sometimes useful, is not an inher-
ent part of the medium, like it is on an ordinary WinForm or WPF application. If you have little or
no state, each request action type becomes like a separate program with a much more limited scope.
Although this does not make bugs go away, it does provide a layer of isolation between the details of
various requests, making the code for any given action easier to understand, manage, and test.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

Silverlight

WHAT'’S IN THIS CHAPTER?

® Working with Visual Studio Project Templates
® Using the Silverlight Toolkit
® Working with data binding

Silverlight is one of the most popular new facets of NET and is used to broadcast the Olympic
Games, Netflix HD streaming, and financial analyst dashboards and is quickly gaining
popularity as a principal enterprise application development platform. Silverlight is a web
browser plug-in runtime environment for executing .NET code. Originally dubbed WPF/E for
Windows Presentation Framework Everywhere, Silverlight offers a powerful vector-based pre-
sentation engine for creating dynamic content. Most development in Silverlight is done in C#
or VB.NET. But because the underlying runtime environment is a special CLR that is compat-
ible with F# code, a few tweaks can unleash the full power of F# in Silverlight applications.

OVERVIEW

Silverlight is a Rich Internet Application (RIA) platform for developing both enterprise and
public Web-based applications. Silverlight 3 and later versions include support for out-of-
browser applications and network status awareness for enabling offline mode. Silverlight 4
supports printing, local fonts, webcam, microphone, group policy object support, and many
other features that make it an excellent platform for both Web and enterprise development.

The recommended architecture for Silverlight development separates the application into two
tiers not including the database tier. The client tier includes presentation logic, for example
client-side validation and animation, plus potentially some client-side business logic needed for

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

358 [XCHAPTER22 SILVERLIGHT

lightweight calculations to reduce round trips to the server. See Figure 22-1. The application server
tier includes server side validation, business logic, and database interaction. The client tier is imple-
mented in Silverlight and deployed as a XAP file that is executed in the Silverlight CLR runtime in
the browser. The application server tier can be implemented using RIA Services or any number of
service platforms including Azure, XML Web Services, and OData. Sensitive intellectual property
is one consideration when determining where to place the business logic. Also, data that requires
secure access should be filtered on the server. For example, it would not be wise to cache project
names on the client if the user is not allowed to have access to them. The business logic to filter the
project names would run on the application server.

Web and
¢~ Application Servers

First, XAP file is downloaded

from the server /\\ '
'
'

Network or
Internet

Database

=,

User Computer with = Silverlight XAP i
Web Browser Second, Silverlight communicates H
and Silverlight back to RIA Services using WCF '

Firewall '{----- €

RIA Services

Other stems
FIGURE 22-1

By leveraging the processing power of the user’s computer to handle any quick response of presen-
tation data, Silverlight has an advantage over other web development platforms such as ASP.NET.
Because the CLR is multithreaded and GPU-accelerated, it also is a richer development platform
than Flash. Because of F#’s built-in constructs such as asynchronous workflows, F# can easily take
full advantage of Silverlight’s multithreading capability on the client, exploiting the increasing num-
ber of cores per system produced by the many-core era of computing.

Using Isolated Storage, a Silverlight application can cache data and user preferences on the client
machine for offline use or quicker responsiveness while the application connects to the backend
systems. Be aware though, it is wise to keep sensitive data, sensitive logic, and intellectual prop-
erty behind the firewall. A XAP file is just a ZIP file with a different name, and the contents can

be reverse engineered. Enterprise applications built on Silverlight may present less concern regard-
ing reverse engineering if only employees can access and download the Silverlight application as
opposed to a publicly accessible application hosted on the Web open to anyone with an Internet con-
nection. During the system design phase, it is important to plan how and where the code executes

in a Silverlight application. Proper planning and architecture accounts for security, scalability, and
performance.

Overview [X359

Software Runtime and Developer Requirements

As mentioned earlier, Silverlight is a web browser plug-in runtime environment for executing .NET
code. It uses a special CLR that is portable on both Windows and Macintosh computers. Also,
through the Mono project called Moonlight, Silverlight is also available unofficially on Linux.
Officially, Silverlight 3 and 4 are supported on Windows XP through Windows 7 in IE 7, IE 8, and
Google Chrome. For the Mac, Silverlight 3 is supported in Safari on Intel hardware. The following
table shows official support for Silverlight versions:

IE 6 SP2 IE7 &8 Firefox 3 Safari Google
Chrome

Windows Silverlight 1, Silverlight 1 Silverlight 2,
Vista/7 2,3,and 4 and 2 3,and 4
Windows Silverlight 1, Silverlight 1, Silverlight 1 Silverlight 2,
XP/2003 2,3,and 4 2,3,and 4 and 2 3,and 4
Mac OS Silverlight 1, Silverlight 1,
10.4/10.5 Intel 2,and 3 2,and 3

Silverlight 1.0 released to Web in 2007 only supported JavaScript. Since Silverlight 2, released in
2008, Silverlight has included a .NET runtime environment. Because Silverlight requires a special
lightweight CLR, a compiler target is required to generate Silverlight-compatible MSIL. Visual
Studio provides templates for making the build process easier.

Visual Studio 2010 includes a project template called the “F# Silverlight Library” for creating
code that can execute in the browser in a Silverlight application. Unfortunately, Visual Studio
2010 does not include a template for building the entire Silverlight application in F#, but it is pos-
sible to use C# or VB.NET templates to build the Silverlight application project and reference an
F# class library for all the logic. An F# Silverlight application template written by Dmitry Lomov,
a developer on the F# team, has been available on MSDN Code Gallery with limitations and
documented issues. Perhaps as it continues to mature it will be included in one of the Silverlight or
F# releases.

One of the best free extensions for developing Silverlight is the Silverlight Toolkit. The Silverlight
Toolkit from CodePlex provides rich graphing tools and controls for building Silverlight appli-
cations. Additional Silverlight controls are also available from various third-party component
venders.

F# Silverlight development with Visual Studio 2008 requires the F# CTP and the Microsoft
Silverlight 3 Tools for Visual Studio 2008 SP1 found on Microsoft Download Center plus Luke
Hoban’s “F# for Silverlight” project templates for Silverlight 3.0 found on MSDN Code Gallery at

http://code.msdn.microsoft.com/fsharpsilverlight

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

360 [XCHAPTER22 SILVERLIGHT

Depending on which version of Visual Studio will be used for development (2008 or 2010)

and which version of Silverlight (3 or 4) is targeted, various downloads are required. Note that
Silverlight 4 development is not supported on Visual Studio 2008. Figure 22-2 shows the necessary
components.

Visual Studio 2008 SP1 Visual Studio 2010

Silverlight 3 Development Silverlight 4 Development

F# 2.0 CTP (download from

Microsoft Download Center) (Visual Studio 2010 includes F#)

Silverlight 3 Tools for Visual (Visual Studio 2010 Silverlight 4 Tools for Visual
Studio 2008 SP1 (download includes Silverlight 3 Studio 2010 (download from
from Microsoft Download and the F# Runtime Microsoft Download Center)
Center) for Silverlight 3 as well « Includes SDK
* Includes SDK gfo';e#cfltl\eﬁ:g%:te)l_lbrary * Includes F# Runtime for
Silverlight 4

F# Silverlight templates for
Silverlight 3.0 (download from
code.msdn.microsoft.com)

Silverlight 3 Toolkit November 2009 Silverlight 4 Toolkit
(download from CodePlex) (download from CodePlex)

FIGURE 22-2

VISUAL STUDIO PROJECT TEMPLATES

The key project template in Visual Studio that hosts the XAML files and builds the X AP file is
called the Silverlight Application project template. The template for a Silverlight application creates
two projects, one for building the Silverlight X AP file and another for building a web site that will
host the Silverlight binaries and any services needed for communicating back to the server from the
client application.

The C# or VB Silverlight application includes XAML files for laying out the user interface.
Silverlight and WPF (Windows Presentation Framework) both use XAML for user interface devel-
opment. There are only minor differences between Silverlight and WPF and, in fact, it is possible
to write applications that can be compiled into both Silverlight and WPF. The similarities between
the two are no accident; the original name for Silverlight was WPF/E or Windows Presentation
Framework Everywhere. So skills gained from using one framework easily translate to the other.

The web site project by default includes an ASP.NET page for testing the Silverlight application,
even though Silverlight does not require ASP.NET for hosting, only HTML. This project template
is handy for rapid application development, because it facilitates building and running a Silverlight
application and automatically connecting the debugger to both the web server process in the Visual
Studio “Cassini” service and the Silverlight process on the browser. It also deploys the X AP file to a
ClientBin folder that the HTML references.

When the build environment is set up, creating some sample data in F# and binding it to a
chart provides a basic understanding of the chart tools. To demonstrate the ease and power of

Visual Studio Project Templates [x361

combining F# and Silverlight, this chapter demonstrates how to manipulate the chart by running
the data through a moving average algorithm implemented in an F# function in just three lines

of code. Moving average is often used in financial applications to visualize trends when the data
series is volatile and erratic. F# provides not only a great way to express and manipulate data, but
also to analyze data. Combined with Silverlight, F# can be a powerful tool for manipulating and
visualizing data.

The Silverlight Application

A Silverlight application template is a special Visual Studio project template that compiles and
builds into a package designed to run in the browser in the Silverlight runtime. The project includes
XAML (XML for describing the UI), .NET assemblies, and other resources such as images that are
packaged into a XAP file to be deployed to a web server. The XAP file is downloaded by a browser
using HTML tags referencing the XAP file on the Web server. When the X AP file has been down-
loaded by the browser, it executes the XAP in a special NET CLR designed to be portable across
operating systems including Macintosh and Linux. This model is similar to other browser plug-ins
such as the JVM (Java Virtual Machine) and Adobe Flash.

@ One major advantage for F# programmers that Silverlight has over Flash is that
it allows an Fi# developer to use a single language for both browser client logic
and server side logic. This reduces the need for JavaScript, AJAX, and other
client-side scripting languages and frameworks. It also allows for better usage
of client-side resources such as Memory and CPU.

Creating the Silverlight Application
For both C# and VB there are three Visual Studio project templates in the Silverlight category:

© Silverlight Application
© Silverlight Class Library
© Silverlight Navigation Application

The first template is the simplest template to get a full Silverlight application started. It includes two
XAML files (one for the application in general and one for the page.) The second template, the C#/VB
Silverlight Class Library, is equivalent to the F# Silverlight Library template. The third template is use-
ful for applications that require multiple screens by providing a navigation framework using the Visual
State Manager from the System.Windows namespace in Silverlight 3 and .NET 4. The navigation
application template is useful when building multiple page navigation without the overhead of browser
post backs and full-page reloads.

The Silverlight Application Template Wizard prompts for the version of Silverlight. Visual Studio 2010
includes only Silverlight 3. Silverlight 4 Tools for Visual Studio 2010 is required for Silverlight 4 develop-
ment. With Visual Studio 2008, the Visual Studio Tools can be installed to support Silverlight 3 (not 4.)
The examples in this book use Silverlight 3 but will work with Silverlight 4 without any changes. The

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

362 [XCHAPTER22 SILVERLIGHT

result of the Template Wizard is a single solution with two projects. Both projects by default have the
same name except the web project has a .Web suffix to distinguish between the Silverlight application
(which creates the XAP file) and the website hosting the application (hosting the XAP, HTML and/or
ASPX, and other server-side services such as RIA Services or web services.) In fact, this second project
is optional because the first project can be compiled and run in Visual Studio without a website project.
The web project is unnecessary because, when the Silverlight application is set as the startup project
instead of the .Web project, and is started with F5, a test HTML page is placed in the bin directory and
Visual Studio launches a browser/debugger instance for debugging the X AP file.

In the Solution Explorer, the Silverlight project includes two XAML files: App.xaml and MainPage
.xaml. These two files include code behind written in C# (or VB.) A later example in this chapter
includes only a single line of C# required to delegate all the work to an F# library.

XAP

When the Silverlight project is compiled, the build process packages it into a XAP file. As mentioned
previously, the X AP file is actually a zip file with a .xap extension. Changing the extension to .zip
facilitates the ability to examine the contents. In fact, this technique is often handy when debugging
deployment issues.

Testing Silverlight in the Browser

The web project includes two TestPage files in the Solution Explorer, one ASPX TestPage (ASP.NET)
and the other HTML. It doesn’t matter which one is used, but initially the ASPX page is set as the
default startup page. The Set As Start Page in the context-sensitive menu can be used to switch
between the two. After the project is built, the web project includes a folder called ClientBin where
the build process copies the X AP file created by building the Silverlight project.

With Visual Studio 2010, the designer window for the MainPage.xaml starts out with a blank rect-
angular surface, 300 pixels by 400 pixels, ready for Ul components. One way to confirm that the
build process is working and the Silverlight prerequisites are installed and configured properly is to
drag a Button control from the toolbox onto the surface, place it in the top-left corner, and hit F5
to run the application. If everything is working properly and the build is successful, a browser win-
dow pops up with a single button on the page.

Visual Studio 2008 may require manipulation of the XML directly or a designer tool such as
Microsoft Expression to lay out the components visually. To add the button directly in the XML,
place a Button element inside the Grid element (between the <Grid x:Name="LayoutRoot"> tag and
the </Grid> tag):

<Button Content="Button" Height="23" HorizontalAlignment="Left"
Margin="14,14,0,0" Name="buttonl" VerticalAlignment="Top" Width="75" />

XAML

XAML is an XML implementation that stands for eXtensible Application Markup Language and is
used in Silverlight applications to describe the Ul elements, layout, and behavior such as animation.

Visual Studio Project Templates [xX363

The XAML file includes a code-behind file in a similar fashion to Web Forms. The XML is used
to declare the graphical components such as buttons and charts and important attributes including
name and type.

Examining the XAML for MainPage.xaml created in the previous section reveals:

<UserControl x:Class="SilverlightAppTest.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d=http://schemas.microsoft.com/expression/blend/2008
xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"
mc:Ignorable="d"
d:DesignWidth="640"
d:DesignHeight="480">
<Grid x:Name="LayoutRoot">
<Button Content="Button"
Height="23"
HorizontalAlignment="Left"
Margin="14,14,0,0"
Name="buttonl"
VerticalAlignment="Top"
Width="75" />
</Grid>
</UserControl>

The XAML for this user control includes several namespaces that need to be added to in order to
support additional controls and libraries. The UserControl element is the root XML document ele-
ment and contains all the other elements. The Grid element has a name attribute assigned the value
LayoutRoot that is used in examples later in this chapter to pass to F# a handle on the UL Inside the
grid is the button added in the previous section. The button contains attributes to describe its size
and position, but most important has a name attribute that is used inside F# for acquiring a handle
to this component to register events such as the Click event.

After the basic Silverlight build environment is prepped, it is easy to start building an F# Silverlight
Library and get instant feedback verifying that the Silverlight Library is functioning properly in the
Silverlight CLR.

The F# Silverlight Library

The F# Silverlight Library is similar to an F# Library except that the build script targets the Silverlight
CLR, which has more limitations than full . NET CLR. Because it is targeted at the Silverlight CLR,
this project cannot be referenced from other non-Silverlight projects.

The library project can include Silverlight event handling code, application logic, service calls to
the host server, and all the Silverlight application code. It is possible to build the entire Silverlight
Ul in F# as well, although because Silverlight utilizes XAML for presentation separation to enable
designer tools such as Microsoft Expression that enable parallel graphic design and development by
separate teams, it is wise to refrain from Ul code as much as possible by implanting it declaratively
in XML.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

364 [XCHAPTER22 SILVERLIGHT

To verify that the F# Silverlight Library is wired up properly and executing in the browser, create a
simple Helloworld function in the Modulel.fs provided by the project template and call the func-
tion from the Silverlight application.

module Modulel

let HelloFromFsharp =
"hello from F# at " + System.DateTime.Now.ToString()

Reference the Silverlight library from the Silverlight application project and add an event handler
to the button. This can be done by double-clicking a button added to the designer surface in Visual
Studio 2010 and adding the following line of code to the event hander generated by the designer:

buttonl.Content = Modulel.HelloFromFsharp;

For Visual Studio 2008, wire up the event handler using XML in the XAML by adding the follow-
ing attribute and value to the Button element.

Click="buttonl_Click"

Then in the code-behind for the MainPage, add a method in C# to handle the event:

private void buttonl_Click(object sender, RoutedEventArgs e)
{
buttonl.Content = Modulel.HelloFromFsharp;

}

To move the event handler over to Fi#, pass a root object in the XAML tree such as the UserControl
and find the controls to register events as demonstrated later in the wireUpEvents function. With a
reference to a control, event handlers can be added using F# as follows:

control.EventName.Add(fun(_) ->
// event handler code here

)

The Usercontrol along with all controls inheriting from System.Windows.FrameworkElement
in Silverlight include a useful method to find a control by name called FindName. A downcast to the
control type needed is required:

let buttonl : Button = downcast container.FindName ("buttonl")

Wire up the controls by finding them and then adding event handlers.

static member WireUpEvents (container:UserControl) =
let buttonl : Button = downcast container.FindName ("buttonl")
buttonl.Click.Add(fun(_) ->
buttonl.Content <- Modulel.HelloFromFsharp
)

Now the C# code in the Silverlight application can be a one line of code addition in the MainPage
partial class constructor, after TnitializeComponent:

public MainPage ()

{
InitializeComponent () ;
SilverlightEvents.WireUpEvents (this.LayoutRoot) ;

The Silverlight Toolkit [X365

The full source for the SilverlightEvents.fs file contains a namespace and an open statement to
qualify the Silverlight controls:

namespace FSharpPro
open System.Windows.Controls

type SilverlightEvents() =
static member WireUpEvents (container:UserControl) =
let buttonl : Button =
downcast container.FindName ("buttonl")

buttonl.Click.Add (fun(_) ->
buttonl.Content <- Modulel.HelloFromFsharp
)

Unit Testing F# Silverlight Library

The previous section described how to build a Silverlight application using a C# template that can
be used to test a Silverlight Library. Good unit tests exclude dependencies and focus only on a single
unit of functionality. Unfortunately, because the Silverlight Library is compiled to DLL (NET
Assembly) that can only be referenced by Silverlight applications, simply referencing this project
from a test project will not build. One technique to test the F# Silverlight Library without using the
Silverlight application is to create a regular F# Library and place a file link in the project to each F#
source file in the Silverlight Library. This new project includes all of the source code but has settings
to compile it against the regular CLR. The new library can be referenced to build and run other test
projects using any .NET testing library including NUnit or Visual Studio Team Test.

The Silverlight Toolkit includes unit testing templates for C# and VB for Silverlight projects. These
could also be used to test an F# Silverlight Library.

THE SILVERLIGHT TOOLKIT

To use the chart controls described next, download and install the Silverlight toolkit from CodePlex
located at http: //www.codeplex.com/Silverlight

There are two versions of the Toolkit: one for Silverlight 3 and one for Silverlight 4. Download the
appropriate one or both if needed and install them.

The Silverlight Toolkit offers a full set of rich controls including mature components such as the
DatePicker, TabControl, and TreevView. It also includes data visualization controls for creating
scatter, pie, bubble bar, and line charts.

As mentioned earlier, the toolkit also includes a Silverlight Unit Test Application project template for
C# and VB.

Line Charts and Area Charts

Line charts are fairly straightforward to work with. Simply place a chart on the XAML surface,
and add a LineSeries to it. To create an area chart, simply use an AreaSeries instead of a

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

366 [XCHAPTER22 SILVERLIGHT

LineSeries. The LineSeries can be declared with XAML, loaded from a static resource at design
time, or created at runtime programmatically. See Figure 22-3 for an example of a line chart.

FIGURE 22-3
To add the chart to the user control, an XML namespace is added to the Usercontrol element.

xmlns:chartingToolkit="clr-
namespace:System.Windows.Controls.DataVisualization.
Charting;assembly=System.Windows.Controls.DataVisualization.Toolkit"

Then add the chart element to the contents of the Grid element.

<chartingToolkit:Chart
Title="Chart Title"
Name="chartl"
Margin="12,41,12,0"
Height="274">

</chartingToolkit:Chart>

XAML is used to declaratively add a line series using a point collection by placing it inside the
Chart element. Visual Studio 2010 automatically displays the chart in the designer (see Figure 22-4).

<chartingToolkit:LineSeries
DependentValuePath="Y"
IndependentValuePath="X">
<chartingToolkit:LineSeries.ItemsSource>
<PointCollection>
<Point>0,15</Point>
<Point>35, 5</Point>
<Point>60,3</Point>
<Point>75,35</Point>
<Point>100,50</Point>
</PointCollection>
</chartingToolkit:LineSeries.ItemsSource>
</chartingToolkit:LineSeries>

Designer Tools

Visual Studio 2010 includes a built-in designer to enable WYSIWYG (what you see is what you
get) design of the Silverlight XAML. (See Figure 22-5.) This allows for adjusting the background

The Silverlight Toolkit [XB67

gradients and other design elements for getting rapid feedback without rebuilding and running the

application in the browser.

FIGURE 22-4

FIGURE 22-5

With Visual Studio 2008 there is no XAML designer for Silverlight built in. Expression Blend
allows designers to open Visual Studio solution files and modify the XAML and even launch the
application without Visual Studio (see Figure 22-6). It is possible to use Expression Blend as a
designer tool to get the same WYSIWYG functionality found in Visual Studio 2010 and in some

ways more.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

368 [XCHAPTER22 SILVERLIGHT

FIGURE 22-6

Expression Blend 3 is targeted at Visual Studio 2008 and Silverlight 3 development and design. Expression
Blend 4 is targeted at Visual Studio 2010 and Silverlight 4 development and design. When both
developers and designers can work on the same files at the same time, there is more opportunity

to work together and provide rapid feedback and development cycles. If a developer is also doing
design work, both tools can be used together at the same time on the same solution. When switch-
ing between Visual Studio and Expression Blend, each tool prompts when the other updates. This
prompt can be suppressed in Visual Studio under Tools & Options so that Visual Studio automati-
cally detects and updates the display without nagging dialogs. There is no such setting in Expression
Blend. But if Expression Blend is used for XAML modification and Visual Studio is used for writing
F# code, then the two work together quite nicely when used in concert.

DATA BINDING

Data binding in Silverlight (as with WPF) can be done declaratively using XAML or programmati-
cally using the Binding class.

Design Time Data Binding

One nice aspect of Silverlight is the ability to bind data at design time. This can be helpful for
designers to understand what the application looks like with sample data. To bind chart data at

Data Binding [X369

design time, one approach is to provide a series of points that can be loaded by Visual Studio 2010’s
designer. A series data point can be defined using a type with object-oriented members. Note that it
is possible to make these data points immutable. The following sample F# code defines a data type
to store each data point:

type SeriesDataPoint (index, value) =
member this.Index with get() = index
member this.Value with get() = value

A sample data set modeled after the C# samples provided in the following Silverlight Toolkit
example exposes a static member that can be loaded by the XAML designer. This uses an
ObjectCollection instance (from the System.Windows.Controls namespace) with 10 data points
using the SeriesDataPoint type defined earlier. A reference to the System.Windows.Controls
.Toolkit assembly is required to access the ObjectCollection type.

‘) open System.Windows.Controls
: type SampleDataSet () =
(‘i\xm?g:ifgnr static member SampleSgries = .
Wrox.com let data = new ObjectCollection()
data.Add (new SeriesDataPoint (0, 124.1))
data.Add (new SeriesDataPoint (1, 124.3))
data.Add (new SeriesDataPoint (2, 125.7))
data.Add (new SeriesDataPoint (3, 115.4))
data.Add (new SeriesDataPoint (4, 115.9))
data.Add (new SeriesDataPoint (5, 125.0))
data.Add (new SeriesDataPoint (6, 133.6))
data.Add (new SeriesDataPoint (7, 131.9))
data.Add (new SeriesDataPoint (8, 127.3))
data.Add (new SeriesDataPoint (9, 137.3))

data

Code Snippet SilverlightDataSet.fs

For the XAML designer to load this objectcollection, declare the sampleDataset class as a
resource in the App.xaml file.

Adding a Resource to the Application XAML Element

To provide design time binding, the Application.Resource element must be added to the
Silverlight application using XAML. Modifying the App.xaml file, which is provided by the
Silverlight Application template, results in the following XAML:

<Application
‘) xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
Available for xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
download on x:Class="FSharpSilverlightDemo.App"
Wrox.com N
<Application.Resources>
<!-- put resources here -->
</Application.Resources>
</Application>

Code Snippet App.xaml

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

370 [XCHAPTER22 SILVERLIGHT

An additional XML Namespace to reference the sampleDataSet type applied to the Application
element is required to load the data. Note that this XML namespace includes the CLR namespace
and the assembly name.

xmlns:sampleData="clr-
namespace:ProFSharp.SeriesData;assembly=ProFSharp.SeriesData"

When the XML namespace has been properly added to the App.xaml file, then it is possible to insert
the resource. This allows referencing the samplebatasSet class in the MainPage.xaml for design
time binding.

<Application.Resources>

<sampleData:SampleDataSet x:Key="SampleDataSet"/>
</Application.Resources>

Finally to see what the chart looks like at design time, include a LineSeries element with bind-
ing to the SampleDataSet.SampleSeries member using the curly brace syntax {Binding
SampleSeries, Source={StaticResource SampleDataSet}}

<chartingToolkit:Chart
‘) Title="Simple Series Data"
N Name="chartl"
Auailable for Margin="12,41,12,0"
Wrox.com Height="274">

<chartingToolkit:Chart.Series>
<chartingToolkit:LineSeries
Title="Sample Series 1"
ItemsSource="{Binding SampleSeries,
Source={StaticResource SampleDataSet}}"
IndependentValueBinding="{Binding Index}"
DependentValueBinding="{Binding Value}" />
</chartingToolkit:Chart.Series>
</chartingToolkit:Chart>

Code Snippet MainPage.xaml

In the preceding example, the TndependentvalueBinding attribute binds the line series to the
Index property of the SeriesDataPoint class. The DependentvalueBinding attribute binds
the value property. With these two properties, the chart can display the points on a Cartesian
coordinate system with an x- and y-axis. The Index is plotted on the x-axis and the value on

the y-axis.
type SeriesDataPoint (index, value) =
member this.Index with get() = index //IndependentValueBinding
member this.Value with get() = value //DependentValueBinding

When compiled, the XAML designer in Visual Studio 2010 can load the static resource and bind
the series to the chart. Note that Visual Studio 2008 does not have designer support, so this chart
will not be visible without running the application. If a development team is limited to Visual
Studio 2008 for Silverlight 3 development, design time support can be found in Expression Blend 3.
Expression Blend 4 is designed to work with Visual Studio 2010 solutions.

Data Binding [X371

Programmatic Data Binding

To add a series programmatically at runtime to the chart, assign the data (the objectcollection)
to the LineSeries.ItemSource property. The following code defines a helper function to bind
the DependentvalueBinding to the "Value" property and the ITndepenentvalueBinding to the
"Index" property. Note that this helper function takes the data as a parameter:

namespace ProFSharp.ChartHelper

open System.Windows.Controls.DataVisualization.Charting
open System.Windows.Data //for data binding

type DataConverter =
static member CreatelLineSeries title data =

let series = new LineSeries|()
series.ItemsSource <- data
series.DependentValueBinding <- new Binding("Value")
series.IndependentValueBinding <- new Binding("Index")
series.Title <- title
series

Following is an example of adding another event handler and wiring up a button to add a second
line series from a second static sample series using the helper function previously defined:

buttonLoadSampleData.Click.Add (fun(_) ->
let data = SampleDataSet.SampleSeries?2
let series = DataConverter.CreateLineSeries "Series 2" data
chart.Series.Add(series)

)

Adding a series to a chart automatically updates the Silverlight display. The problem with using
this approach to update an existing chart is that it requires that the series be cleared and a new
series created and added to the chart. This approach causes the new series to appear in a differ-
ent color, because the chart assumes that it is a whole new series. To modify a series in place, and
have Silverlight Toolkit chart animate the change, the seriesDataPoint must implement the
INotifyPropertyChanged interface:

) namespace ProFSharp.ChartHelper

open System.ComponentModel
Available for L v L

download on
Wrox.com type SeriesDataPoint (index:int, value:float) =

let mutable v = value
let propertyChanged = Event<_, _>()

member this.Index

with get() = index
member this.vValue
with get() = v

and set (value) =
v <- value

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

372

[XEHAPTER 22 SILVERLIGHT

propertyChanged.Trigger (this,
PropertyChangedEventArgs ("Value"))
interface INotifyPropertyChanged with
[<CLIEvent>]
member this.PropertyChanged = propertyChanged.Publish

Code Snippet SeriesDataPoint.fs

The INotifyPropertyChanged interface contains only one member, the PropertyChanged event.
One way to implement this event is using the CLTEventAttribute to decorate the event and use the
event Publish property to publish the event. A setter has been added to the value property to make
the seriesDataPoint mutable. In the preceding example, if a change is made to the "value" prop-
erty, the setter triggers the event using the Trigger method and passes the property name as part of
the EventArgs.

If the Silverlight Toolkit sample application is executed, several charts update by themselves every
two seconds. This effect was accomplished by implementing the INot i fyPropertyChanged inter-
face. With a framework for updating the graph, now it is possible to visualize some interesting data
manipulation using the Silverlight Toolkit.

CALCULATING MOVING AVERAGE

Data by itself can be interesting to visualize, but often the trends or patterns in data can be more
useful. In the financial sector and in economics, the moving average is a common model often
applied to time series data to assist analysts in understanding trends and help predict future direc-
tions of a series. But looking for patterns in data can be useful for a range of solutions including
security attack detection or business intelligence applications. An algorithm for calculating moving
average in F# takes the data and chunks it into windows and calculates the average of each window:

let MovingAverage period data =
Seq.windowed period data
Available for |> Seg.map Array.average
download on
Wrox.com let testdata = [1.0 .. 10.0]

let result = MovingAverage 4 testdata

Code Snippet Economics.fs

The output of these three 1et statements to the F# Interpreter are:

val MovingAverage : int -> seg<float> -> seg<float>
val testdata : float list =

[1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0; 8.0; 9.0; 10.0]
val result : seg<float>

Viewing the result in FSI displays the first few items in the sequence.

> result;;
val it : seg<float> = seq [2.5; 3.5; 4.5; 5.5; ...]
>

Putting It All Together [X373

The result is a moving average based on the period applied. The average of the first four points are
(1 +2+4+3+4)/4=2.5, which is the first value of the series result. The second setis (2 + 3 + 4

+ 5) /4 = 3.5 and so on through the sequence. The Seq.windowed function returns a sequence that
produces sliding windows of the input elements as arrays of the size specified.

If the testdata value contains ten elements (the floating point numbers 1 through 10) then
Seq.windowed 4 testdata returns ten arrays each containing four elements:

> Seqg.windowed 4 testdata;;
val it : seg<float []> =
seq
[[]1.0; 2.0; 3.
[|3.0; 0; 5

>

Take that sequence of windows and using the pipe forward operator, pipe it into the seq.map func-
tion to apply the average of each array.

Seqg.windowed period data
|> Seqg.map Array.average

Overlaying the moving average on the chart provides an augmented view of the original data. Using
a slider control or other input control, the user interface can provide input for the moving average
period function and provide a parameter to animate the chart.

PUTTING IT ALL TOGETHER

Using a C# or VB Silverlight Application project to host the XAML and build the XAP file, an F#
Silverlight Library project to put all the application logic, and the Silverlight Toolkit to provide visu-
alization, the application framework is ready to generate some interesting charting. Leveraging the
INotifyPropertyChanged to provide animation to the data points and a slider control to give the
user the ability to change the range of the moving average period window, the following example
puts together a MovingAverageModel to store the SeriesDataPoint collection as a generic List.
When the UpdateSeries method is called as a result of a mouse event, a new moving average is cal-
culated and the data point value property is updated.

type internal MovingAverageModel (chart:Chart, slider:Slider) =
‘) // used for animated data bining
Available for let mutable m_dynamicItemsSource =
download on new System.Collections.Generic.List<SeriesDataPoint>()
Wrox.com // stores the original data

let mutable m_data = []
// stores the moving average range (window size)
let mutable m_range = 1

member private this.GetMovingAverageSeries movingAverage =
let title = String.Format("{0} Moving Average", m_range)
DataConverter.ConvertSequenceToAreaSeries title movingAverage

member private this.InitSeries =
chart.Series.Clear()
// generate moving average using range and data

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

374 [XCHAPTER22 SILVERLIGHT

let movingAverage = MovingAverage m_range m_data
// build both AreaSeries sets
let seriesl =

DataConverter.ConvertSequenceToAreaSeries "Original Data" m_data
let series2 = this.GetMovingAverageSeries movingAverage
chart.Series.Add (seriesl)
// generate dynamic item source used for animated data binding
let array = List.toArray(m_data)
let max = array.Length - 1
for i in 0..max do

m_dynamicItemsSource.Add (new SeriesDataPoint (i, array.[i]))
series2.ItemsSource <- m_dynamicItemsSource
chart.Series.Add (series2)
this.UpdateSeries ()
()

member this.Init() =
//initialize members
m_dynamicItemsSource <-
new System.Collections.Generic.List<SeriesDataPoint> ()
m_range <- (int slider.Value)
m_data <- List.ofSeqg <| GenerateData 200.0 50.0 50
this.InitSeries

//naive forcast algorithm based on historical flow

member internal this.Forcast last index =
let distance = index - last + 2
let pastPoint = m_dynamicItemsSource.Item(last - distance)
let lastPoint = m_dynamicItemsSource.Item(last - 1)
let trend = lastPoint.Value - pastPoint.Value
lastPoint.Value + trend

member internal this.UpdateSeries() =
m_range <- (int slider.Value)
let movingAverage = MovingAverage m_range m_data |> Seq.toList
for point in m_dynamicItemsSource do
if point.Index < movingAverage.Length then
point.Value <- movingAverage.Item(point.Index)
else
point.Value <- this.Forcast movingAverage.Length point.Index
()
let legend = chart.Series.[1].LegendItems.Item(0) :?> LegendItem
legend.Content <- m_range.ToString() + " Moving Average"

()

member
this.UpdateMovingAverage (args:RoutedPropertyChangedEventArgs<float>) =
let oldval = int args.Oldvalue
let newVal = int args.NewValue
if oldval = newVal then
()
elif (Math.Abs(oldval - newVal) > 4) then
m_range <- newVal
this.UpdateSeries ()

Putting It All Together [X375

()
else
m_range <- newVal

()

Code Snippet SilverlightEvents.fs

To complete the application, wire up the model to the chart. Add a slider and buttons and add event
handlers to trigger the model to generate new data. The sample code downloadable from the book’s
site at www.wrox .com will product the graph seen in Figure 22-7.

static member WireUpMovingAverageChart (container:UserControl) =
\) let chart : Chart = downcast container.FindName ("chartMovingAverage")
let slider : Slider = downcast container.FindName ("sliderMovingAverage")

Available for

“ﬂ‘,“:ﬂ;‘fﬂg,ﬂ" let model = new MovingAverageModel (chart, slider)
model.Init()
let buttonNewData : Button = downcast container.FindName ("buttonNewData")
buttonNewData.Click.Add (fun(_) -> model.Init())
slider.MouseLeftButtonUp.Add (fun(_) -> model.UpdateSeries())
slider.ValueChanged.Add (fun(callback) -> model.UpdateMovingAverage (callback))
()

Code Snippet SilverlightEvents.fs
FIGURE 22-7

This example generates the data randomly. For a true application, the next step would be to add a
server-side component using RIA Services or another Silverlight-accessible service. Silverlight has
the capability to consume restful services, WCF, Web services, and more. By placing the data source
on the server, the data can be controlled and protected. Perhaps the service may require a monthly

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

376 [XCHAPTER22 SILVERLIGHT

subscription, may be throttled by priority, or may provide limited access based on security roles.
All these scenarios are possible by building services. And those services can also be built in F#.

SUMMARY

This chapter leverages the powerful capabilities of F# to build rich, dynamic, and responsive
Silverlight applications. Currently the tools are limited for F# Silverlight Application templates, but
a C# or VB Silverlight Application template can be used to delegate all the important code to an
F# Silverlight Library. Because Microsoft has implemented the FSharp.Core.dll (the F# runtime)
for Silverlight, F# code can run in a multitude of browsers on multiple operating systems includ-
ing Macintosh OS, Firefox, and Google Chrome browsers. Silverlight is a flexible application
framework for both public Web applications and for Enterprise applications. Because Silverlight is
a client-side technology, it can be easily deployed on any web server, including Linux and UNIX-
based systems. As long as the users have installed the Silverlight plug-in in their browser, they can
take advantage of all the power it offers. That is why Silverlight has been used for everything from
the broadcast of the Olympics to real-time dashboards for financial advisors. Together F# and
Silverlight make a powerful pair.

Services

WHAT'’S IN THIS CHAPTER?

Defining service contracts
Hosting F# services

Implementing contracts

@ © o ©

Consuming services

It is amazing to see that, even at the time of publication in 2010, most applications currently
in production tend to interface with other systems through mechanisms that create extrane-
ous coupling. It is still common to see mechanisms such as file polling (system A polls an FTP
server until system B drops a file in the right place) and shared databases. The former is waste-
ful, and the latter presents all sorts of pain as systems grow and evolve. Shared databases are
particularly bad because they present what is often an “unprotected door” through which data
can enter without any sort of validation or business rules applied. They also effectively become
a giant API, with every table, every column, and every row adding to the surface area of what
must be tested when changes are made.

OVERVIEW

To avoid this fate and to provide a better alternative for interoperation, Service Oriented
Architecture (SOA) was invented. Services are developed that provide interfaces between plat-
forms so that we can open the functionality of a system to other systems, while preserving the
integrity of those systems. Services can take the form of web services, but they do not always
need be served up via the web, an idea that has deep support in the Microsoft Windows
Communication Foundation. The form of the service is less important than what it does, and
making sure it is written in the right way to be relevant (meet a business need), reusable, scal-
able, and secure.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

378 [XCHAPTER23 SERVICES

An important aspect of many services is that, all things being equal, stateless services are preferred
over stateful ones. As has been emphasized many times in this book, F# is a great fit for applications
that do not require state. In the world of services, there is almost never a need for state. Even in the
case of stateful services, state is usually persisted in either an application database, or some sort of
state server so that if the next requests comes in from a different server, it can pick up the context
and continue work. This makes F# programs particularly well oriented toward service-oriented
applications, as was pointed out in Chapter 21, where a comparison is made between services that
serve HTML over HTTP, and services that serve other stuff (be it XML, JSON, or something else)
on some other protocol over application service boundaries.

This chapter focuses on implementation of services in F#. Particular attention is paid toward

using F# to define service contracts in WCF, implementing contracts, and fulfilling those contracts
through an F #-based domain model. It then goes into how to configure and host services. Finally, it
presents an example of F#-based service consumption.

AN F#-BASED WEATHER SERVICE

Although having a basic site that provides a forecast may be of some utility, it would not be incon-
ceivable that there would be other uses of weather data in other systems. Say, for example, there is
a need for a service that alerts farmers in Florida about the need to protect their citrus crop. Such
a system may want to call out to a weather service that averages the expected temperature over a
short-term period, so that the crops can be protected with reasonable lead time.

The Service Contract

Just like it is considered good practice to use tests to make sure development “begins with the
end in mind” (apologies to Stephen Covey), it also makes sense to do so when writing services. In
other words, it is helpful to ask the question, before writing implementation code, what is it that
this service should do?

To that end, start with an assumption that the service should provide the user with information
about a weather forecast, including such items as an average expected temperature, recommended
attire, and weather to expect. If the general shape of what is required is known, the next step is to
start by writing a data contract to define the shape of the result:

namespace ProFSharp.Services
‘) open System
N open System.ServiceModel
Available for
download on open System.Runtime.Serialization
Wrox.com

[<DataContract>]

type Forecast() =
let mutable _city : string = String.Empty
let mutable _averageExpectedTemperature : double = 0.0
let mutable _recommendedAtture : string = String.Empty
let mutable _weather : string = String.Empty
[<DataMember>]
member public f.City

with get() = _city and set(v) = _city <- v

An F#-Based Weather Service [xX379

[<DataMember>]
member public f.AverageExpectedTemperature
with
get () = _averageExpectedTemperature and
set (v) = _averageExpectedTemperature <- v
[<DataMember>]
member public f.RecommendedAttire
with get() = _recommendedAtture and set(v) = _recommendedAtture <- v
[<DataMember>]
member public f.Weather
with get() = _weather and set(v) = _weather <- v

Code snippet ServiceContract.fs

Note the presence of a couple things here that are not normally present in idiomatic F# code.
First, in the world of Microsoft WCF Services, things that are not primitive types (that is, strings,
ints, doubles, and the like) need to be described in a Datacontract. The type gets marked as

a [<DataContract>], and each member that is to be passed over the wire is marked with the
[<DataMember>]thﬂbuI&

It is also worth noting that these data contracts take the form of mutable types. The chief reason
this is needed is for purposes of serialization, because it is expected that the client using the service
will need to use serialization to repopulate the object when it is received. WCF, as of this writing,
does not hydrate objects through means F# would consider typical (that is, the way you might popu-
late a record), and therefore, to allow for the client to set the properties, the data contract has to
define mutable properties.

A data contract can also be defined as an interface, which would allow us to build a nonmutable
version on the F# side for the concrete implementation of the data contract. Although it would be
slightly more idiomatic for F#, the added code in such a case for an object that acts as a simple DTO
is typically not worth the trouble.

Of course, a DataContract alone isn’t terribly useful. Also needed is a means to retrieve an object
or objects that will match the patacontract. These are defined using ServiceContract and
OperationContract:

[<ServiceContract>]
type IWeatherService =
[<OperationContract>]
abstract member GetForecastFor: place:string -> Forecast

Generally, a weather service will implement something that turns a string into a Forecast

that matches the patacontract definition. On the surface, OperationContract is pretty
straightforward. However, it is important to note that, as a consequence of the way WCF works,
any parameters in an OperationContract must be named, or else exceptions will be raised when
the service is hosted.

When a serviceContract is in place, the next step is to think about how to fulfill the conditions
of the serviceContract. A good place to start is to use any domain models that might have been
developed previously.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

380 [XCHAPTER23 SERVICES

LEVERAGING THE DOMAIN MODEL

One of the nice things about domain models is that they can easily be reused in different contexts.
The forecast domain model was previously used in the context of an ASP.NET MVC website in
Chapter 21. The domain model was expressed as follows:

type SkyType =
| Sunny

| Overcast

| PartlyCloudy

| Snow

| Rain

\

\

! namespace FSharpBook.Models

Available for
download on
Wrox.com

Hurricane
Zombies

type Forecast = { Location:string; AverageTemperature:double; Skies:SkyType }

type Attire =
| Bikini
| Normal
| LightJacket
| Coat
| Raincoat
| parka

| BodyArmor

type Forecast with
member forecast.ToAttire() =
match forecast.AverageTemperature, forecast.Skies with

| temp,sky when temp > 75.0 && sky = Sunny || sky = PartlyCloudy -> Bikini
| temp,sky when temp > 65.0 && sky = Sunny || sky = PartlyCloudy -> Normal
| temp,sky

when temp > 45.0 && sky = Sunny || sky = PartlyCloudy -> LightJacket
| _,Rain -> Raincoat
| temp when temp < 20.0 -> Parka
| _,Hurricane -> Coat
| _,Snow -> Parka
| _,Zombies -> BodyArmor
| _ -> Coat //when in doubt, wear a coat...

Code snippet ForecastModel.fs

The preceding model constitutes the recommendation engine that the service will provide an inter-
face to. In a sense, all that is being done is replacing the user interface developed in the context of an
ASP.NET MVC website with a system interface that will provide the same information.

It is worth noting that the ability to reuse a model from the previous example in the MVC context is
a big reason why staying true to the principle of separation of concerns is so important. Had things
like Ht tpRequest objects slipped into the model, or worse, tied the model to specific types of pre-
sentation logic, it would have required significant rework to reuse the model. Moreover, if someone
wanted to update the model, the updates would have to be done in two places. Very bad indeed!

Writing the Service Controller [xX381

WRITING THE SERVICE CONTROLLER

Just as one developer is a controller for MVC applications so that requests in http can be converted
to the appropriate calls into the domain model, when developing services, controllers are used that
can take external requests and route them appropriately. Although it is tempting to reuse the same
MVC controller, chances are, it likely brings in more complexity than we need, because the needs in
MVC to map a complex set of parameters from an http request into routes is not present. As such, a
much less complex controller model for a service controller shall be used.

Rendering Weather

There are some needs on the service controller that are going to be similar to things that were
needed on the ASP.NET MVC controller. Specifically, a means to convert from algebraic data types
on the domain into the appropriate string in the service contract will be needed. The following
methods are carried over from the view helper project in Chapter 21 to help with that task:

module WeatherRendering
open FSharpBook.Models

f,‘:,’:},',?g;f,'g,ﬁ let ToWeatherString sky =

Wrox.com match sky with
| Sunny -> "Sunny"
| Overcast -> "Overcast"
| PartlyCloudy -> "Partly Cloudy"
| Snow -> "Snow"
| Rain -> "Rain"
| Hurricane -> "Hurricane"
| Zombies -> "Oh NO! ZOMBIES!!!"
let ToAttireString attire =
match attire with
| Bikini -> "Bikini"
| Normal -> "Normal"
| LightJacket -> "Light Jacket"
| Coat -> "Coat"
| Raincoat -> "Raincoat"
| parka -> "Parka"
| BodyArmor -> "Body Armor"

Code snippet ForecastModelRendering.fs

The preceding code converts the weather types into strings for ease of consumption on the client.
Of course, it is conceivable that future versions of the service could specify a preferred culture for
results to be rendered in. Were that to happen, it would simply mean that these methods would take
a parameter, and likely, look up the appropriate string in a resource file.

Helping the Service Controller
ASP.NET MVC comes stocked with objects like Mode1Binder that help the programmer take a

model and, so long as various conventions are followed, renders that model in a view. In the world

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

382 [XCHAPTER23 SERVICES

of service controllers, there is no such concept. As a result, service controllers tend to use libraries,

or otherwise contain routines, that convert model concepts into terms that the service contract can

understand. In this case, a Forecast from the model is needed to convert into the type Forecast
that was defined in the data contract:

J

Available for
download on
Wrox.com

namespace ProFSharp.Services
open FSharpBook.Models
open WeatherRendering

type ForecastServiceRenderer() =
static member Render (forecast:Forecast) =
let renderedForecast = new ProFSharp.Services.Forecast ()
renderedForecast.AverageExpectedTemperature <- forecast.AverageTemperature
renderedForecast.City <- forecast.Location
renderedForecast .RecommendedAttire <- forecast.ToAttire()
|> WeatherRendering.ToAttireString
renderedForecast.Weather <- forecast.Skies |> WeatherRendering.TolWeatherString
renderedForecast

Code snippet ServiceRenderer.fs

The goal here is to convert an FSharpBook.Models.Forecast into a ProFSharp.Services

.Forecast. Thankfully, doing so is not that hard, merely a matter of providing a function that

creates a ProFSharp.Services.Forecast and maps the properties from the FSharpBook.Models

.Forecast. This is a fairly common type of thing to do when converting from the F# world of
records to the world of objects in the broader CLR and beyond.

Service Controller Implementation

Thankfully, in the context of a WCF service that does not have to worry about rendering to such
complex creatures as humans, the implementation of a service controller is far simpler:

J

Available for
download on
Wrox.com

namespace ProFSharp.Services
open FSharpBook.Repositories

type ForecastServiceController() =
member forecastController.For (locationQuery:string) =
locationQuery
\> YahooForecastRepository.GetForecastByLocation
|> ForecastServiceRenderer.Render

Code snippet ServiceController.fs

There are two routines that are particularly interesting. We are reusing our YahooForecastRepository
.GetForecastByLocation (see Chapter 21) to provide a means to retrieve the model. The next step
is to pass said model to ForecastServiceRenderer.Render so that they can pass back something
in the form of an object that conforms to the DataContract back at the service host.

Writing the Service Controller [X383

Service Implementation

The last piece, a controller is in place, is to write something that will implement the
IWeatherService:

open System.ServiceModel

! namespace ProFSharp.Services
[<ServiceBehavior (ConfigurationName="Weather") >]

d"‘;m?g;%m ty}lje YahooWeatherService.() = .
Wrox.com interface IWeatherService with
member s.GetForecastFor place =
(new ForecastServiceController()).For (place)

Code snippet Servicelmplementation.fs

The service implementation usually defers to a controller that will provide most of the details. The
purpose here is to map what the controller does with specific operations from the service contract. It
is hard not to notice the lack of code here — the service implementation itself is not unlike a view in
the world of ASP.NET MVC — it is something ideally composed of as little code as possible. Most
of the action for dealing with a domain should (and is) deferred to the controller. With the imple-
mentation in place, it is time to get into the implementation of the service host itself.

Implementing the Service Host

Services have come a long way since 2001, when most people in the world of .NET thought the
word Service was synonymous with Web Service, and that SOA was a matter of sprinkling a
WebMethod attribute in various places around a codebase. WCF is an important technology for
moving away from having to bring the baggage of IIS and all its administrative overhead to host a
service. In fact, the code that is written to host a service is amazingly simple:
module ServiceHost
‘) open System.ServiceModel

open ProFSharp.Services

Available for
nl n L
"ﬂ‘,”mx'fﬂg,ﬁ let startServicing() =
let host = new ServiceHost(typeof<YahooWeatherService>, [|]|])
host.Open ()
printf "Press the 'any' key to stop hosting the service"
System.Console.ReadKey () |> ignore
startServicing ()

Code snippet ServiceHost.fs

This example has been provided because it works in the context of a console application. We could
just as easily run this in the context of a Windows Service (aka a Daemon running in the back-
ground, not to be confused with a WCF Service), and not interact with an end user. The really

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

384

[XEHAPTER 23 SERVICES

J

important lines of code are not the ones that print to the console and ask you to press the ‘any’ key,
but the following lines:

let host = new ServiceHost(typeof<YahooWeatherService>, Array.empty)
host.Open ()

The serviceHost class knows how to read a configuration file and use that to start servicing
requests according to said configuration. It is only at this point that all those attributes that were
included in prior code written in this chapter start to get interpreted. Of course, the .0pen () method
will fail if there is not a configuration file present that tells the serviceHost what to do:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
Available | <system.serviceModel>
vailable for .
download on <behav1?rs> .
Wrox.com <serviceBehaviors>

<behavior name="serviceBehavior">
<serviceMetadata httpGetEnabled="false" />
</behavior>
</serviceBehaviors>
</behaviors>
<services>
<service behaviorConfiguration="serviceBehavior" name="Weather">
<clear />
<endpoint
address="WeatherService"
binding="basicHttpBinding"
name="basicHttp"
contract="ProFSharp.Services.IWeatherService" />
<endpoint binding="mexHttpBinding" name="mex"
contract="IMetadataExchange" />
<host>
<baseAddresses>
<add baseAddress="http://localhost:8000/WeatherService" />
</baseAddresses>
</host>
</service>
</services>
</system.serviceModel>
</configuration>

Code snippet App.config

The preceding code, typically in something like app . config, specifies how a service host will do its
work. Much of this is boilerplate, but of particular importance are the attributes in <endpoint> and
<host>. The <endpoint> maps a URL to a contract (in this case, WeatherService to ProFSharp
.Services.IWeatherService). The <host> provides information to the ServiceHost about what
port and URL will be used to access the service.

Of course, there are many ways to configure a service, and the goal here isn’t to go through each
one. The book Wrox Professional WCF 4: Windows Communication Foundation with .NET 4 is a
great resource for further understanding of the details of WCF Service Host configuration.

Consuming Services [xX385

Now, there are some provisions we need to account for before this stuff will actually work. Namely,
most systems are not configured to simply let any identity start serving requests at any random
port. One thing that needs to be done is to set up permissions that allow the app — or the Windows
Service, if that route is chosen — to host requests, which in this case, are http requests. The follow-
ing command is typical for allowing a given identity to service http requests:

netsh http add urlacl url=http://+:8000/WeatherService user=YourUserId

When permissions allow for the serviceHost to serve up http requests, the service host can be started.
To make sure the service is responsive, open a browser and point it to http: //localhost:8000/
WeatherService to make sure a valid response is returned from the http request.

CONSUMING SERVICES

Consuming services, in the world of WCF, is typically a matter running svcutil.exe against a
URL, which will generate a C# file that can be compiled into something usable for consuming
a service.

Generating a Service Stub

If the URL http://localhost:8000/WeatherService returns a valid response, it can pass that as
a parameter to svcutil.exe (from your .NET Framework SDK), which will generate a file with the
following code:

[=
‘) // <auto-generated>

Available for !/ This code was generated by a tool.
download on // Runtime Version:2.0.50727.4927
Wrox.com //
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
s

namespace ProFSharp.Services

{

using System.Runtime.Serialization;

[System.Diagnostics.DebuggerStepThroughAttribute ()]
[System.CodeDom.Compiler.GeneratedCodeAttribute ("System.Runtime.Serialization",
"3.0.0.0")1
[System.Runtime.Serialization.DataContractAttribute (Name="Forecast",
Namespace="http://schemas.datacontract.org/2004/07/ProFSharp.Services")]
public partial class Forecast : object,
System.Runtime.Serialization.IExtensibleDataObject
{
private System.Runtime.Serialization.ExtensionDataObject
extensionDataField;
private double AverageExpectedTemperatureField;
private string CityField;

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

386 [XCHAPTER23 SERVICES

private string RecommendedAttireField;
private string WeatherField;

public System.Runtime.Serialization.ExtensionDataObject ExtensionData
{

get

{

return this.extensionDataField;

this.extensionDataField = value;

[System.Runtime.Serialization.DataMemberAttribute ()]
public double AverageExpectedTemperature
{

get

{

return this.AverageExpectedTemperatureField;

this.AverageExpectedTemperatureField = value;

[System.Runtime.Serialization.DataMemberAttribute ()]
public string City
{
get
{
return this.CityField;

this.CityField = value;

[System.Runtime.Serialization.DataMemberAttribute ()]
public string RecommendedAttire
{

get

{

return this.RecommendedAttireField;

this.RecommendedAttireField = value;

Consuming Services [x387

[System.Runtime.Serialization.DataMemberAttribute ()]
public string Weather
{

get

{

return this.WeatherField;

this.WeatherField = value;

[System.CodeDom.Compiler.GeneratedCodeAttribute ("System.ServiceModel",

"3.0.0.0")]

[System.ServiceModel.ServiceContractAttribute (ConfigurationName="IWeatherService")]

public interface IWeatherService
{

[System. ServiceModel.OperationContractAttribute (Action="http://tempuri.org/
IWeatherService/GetForecastFor", ReplyAction="http://tempuri.org/IWeatherService/

GetForecastForResponse")]
ProFSharp.Services.Forecast GetForecastFor (string place);

[System.CodeDom.Compiler.GeneratedCodeAttribute ("System.ServiceModel",

public interface IWeatherServiceChannel : IWeatherService,
System. ServiceModel.IClientChannel

{

}

[System.Diagnostics.DebuggerStepThroughAttribute ()]
[System.CodeDom.Compiler.GeneratedCodeAttribute ("System.ServiceModel",
public partial class WeatherServiceClient
System.ServiceModel.ClientBase<IWeatherService>, IWeatherService

{

public WeatherServiceClient ()
{
}

public WeatherServiceClient (string endpointConfigurationName)
base (endpointConfigurationName)

"3.0.0.0")]1]

"3.0.0.0")]

public WeatherServiceClient (string endpointConfigurationName, string

remoteAddress)
base (endpointConfigurationName, remoteAddress)

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

388 [XCHAPTER23 SERVICES

public WeatherServiceClient (string endpointConfigurationName,
System. ServiceModel .EndpointAddress remoteAddress)
base (endpointConfigurationName, remoteAddress)

public WeatherServiceClient (System.ServiceModel.Channels.Binding binding,
System. ServiceModel .EndpointAddress remoteAddress)
base (binding, remoteAddress)

{
}
public ProFSharp.Services.Forecast GetForecastFor (string place)
{
return base.Channel.GetForecastFor (place);
}

Code snippet YahooWeatherService.cs

Yes, it is a lot of generated code; when a closer look is taken, it is simply a lot of boilerplate that
hides the ugly implementation details of putting together the appropriate request to the service that
was just implemented. It can be ignored for the most part, other than to use it, it needs to be put
into a .NET C# Windows DLL project so that it can be easily used from F# code that needs to con-
sume this functionality.

The generated code defines a WeatherServiceClient that is capable of reading a configuration — telling
it what address to make requests to — and handling the response so that the result matches the form speci-
fied in the DataContract.

Writing the Service Consumer

Assuming the previous example has been put in a project we can reference from an F# project, call-
ing the service is not too difficult. However, to use this, there is the matter of configuring the client
with a mapping so it can know where to make the call to:

<?xml version="1.0" encoding="utf-8"?>
‘) <configuration>
available | <system.serviceModel>
vailable for .o
download on <bindings>
Wrox.com <basicHttpBinding>

<binding name="basicHttp" closeTimeout="00:01:00" openTimeout="00:01:00"
receiveTimeout="00:10:00" sendTimeout="00:01:00" allowCookies="false"
bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536" maxBufferPoolSize="524288"

maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
useDefaul tWebProxy="true">
<readerQuotas maxDepth="32" maxStringContentLength="8192"

Consuming Services [X389

maxArrayLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />
<security mode="None">
<transport clientCredentialType="None" proxyCredentialType="None"
realm="">
<extendedProtectionPolicy policyEnforcement="Never" />
</transport>
<message clientCredentialType="UserName" algorithmSuite="Default" />
</security>
</binding>
</basicHttpBinding>
</bindings>
<client>
<endpoint address="http://localhost:8000/WeatherService/WeatherService"
binding="basicHttpBinding" bindingConfiguration="basicHttp"
contract="IWeatherService" name="basicHttp" />
</client>
</system.serviceModel>
</configuration>

Code snippet App.config

The preceding example provides a means for the code that will create a WweatherserviceClient to
know what address to make calls to, as well as various parameters around things like timeouts and
the like. The <endpoint> configuration is of particular note and should match the <endpoint> that
was specified on the host configuration. Most good WCF books will provide adequate detail on how
to use all the provided settings. Thankfully, the default settings are good enough for us to see how
F# code will work when using a weathersServiceClient:

! open ProFSharp.Services

let getWeatherFor place =

d“;m?g;ﬁm use myWeatherService = new WeatherServiceClient ()
Wrox.com let theWeather = place |> myWeatherService.GetForecastFor

printf "The weather in %s should average %g degrees with %s, wear %s!"
theWeather.City
theWeather.AverageExpectedTemperature
theWeather.Weather
theWeather.RecommendedAttire
printf "\n\nPress any key to continue"
System.Console.ReadKey () \> ignore

getWeatherFor "Romeoville, IL"

Code snippet Program.fs

The client itself is an IDisposable resource, so it is important to make sure to use the use binding
when retrieving it. Outside of that, the mechanics of using the service are mere idiomatic F# code.

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

390 [XCHAPTER23 SERVICES

SUMMARY

Services, among other things, are a way that programmers can provide outside systems a window
into a domain model. They are a key to making interoperability happen in a more predictable man-
ner. Without reliable services, experience demonstrates interoperability will happen — through the
database, which for anyone who has maintained a legacy “integration database” knows, is far more
error prone than it is through services. If you doubt that, ask yourself what happens when you start
to have programs that read data that is frequently modified in hard-to-predict ways by other pro-
grams, and what the testing load on programs like that is like.

INDEX

<< (backward composition), 274-275
<l (backward pipe), 271-272

>> (forward composition), 273-274
I> (forward pipe), 270-271

_ (underscore) as wildcard, 86

abbreviations, types, 105-106
abstract inheritance, 210
abstract keyword, 168, 170
abstract members, overriding and, 168-169
AbstractClass attribute, 168, 201
abstraction, 95
collection abstractions, 257-258
leaky abstraction, 342
access
arrays, 62
list elements, 68-70
maps, 8§0-81
properties, 135
access modifiers
members, 155
types, 156
accumulators, 263-264
fold function, 265-266
reduce function, 264-265
scan function, 266-267
active patterns, 95-96
multi-case, 99-101
partial-case, 97-99
single case, 96-97
XML and, 329-330
multicase, 330-335
partial case, 336-339
ADO.NET
data retrieval, 298-302
database connections, creating, 298
delete operations, 301-302
filtering data, 300-301
insert operations, 301-302

reading data, 299-300
update operations, 301-302
allHighAndLowAttributes function, 321
ambiguously typed data, 247-248
AND patterns, 90
APIs (Application Programming Interfaces), writing,
294-295
AppDomain, 150
application operations
arrays, 64-65
lists, 71-72
sequences, 78-79
area charts (Silverlight Toolkit), 365-366
arguments, functions, 211-215
automatic generalization, 211-212
generic type, 214
partial application, 215-218
statically resolved type parameters, 215
type constraints, 214
arithmetic conversions, 41-42
arity of methods, 142
array patterns, 93
Array.create function, 60
arrays
access, 62
brackets, 60
construction, 60-61
functions, 62-65
application operations, 64-65
meta functions, 63-64
immutability and, 242
literal byte arrays, 42
range expressions, 60
syntax, 61
using, 72-73
arrow-based notation, 168
as clause, 128
as keyword, 92
as patterns, 92
ASP.NET MVC
Forecast’r, 342
controller, 349-351

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

391

assembly attributes — class methods

model, 343-344
repository, 344-348
view, creating, 352-355
view helpers, 351-352
weather result, 348
Where On Earth ID, 345-346
overview, 341-342
assembly attributes, 201-202
asynchronous workflows, immutability and, 228
attributes
AbstractClass, 168
custom, 197-198
AbstractClass, 201
assembly attributes, 201-202
AutoOpen, 202
Class, 201
Conditional, 200
consumption, 205-206
creating, 203-205
Defaul tMember, 202
EntryPoint, 198-199
GetCustomAttributes() method, 205
Interface, 201
NonSerializable, 202
Obsolete, 199-200
ParamArray, 200-201
Serializable, 202
Struct, 201
Obsolete, 198-199
RequiresQualifiedaAccess, 107
Serializable, 198
automatic generalization, 211-212
AutoOpen attribute, 202

backward composition (<<), 274-275
banana clips around functions, 96
Base Class Library, 42
BeginInvoke method, 151
bigint type, 38
binary operators, 148
BinaryTree type, 112
bindings

let, 130, 140

member, 140
bitwise operators, 40
BlameAttribute class, 203
bool type, 37
Boolean types, 37
boxing/unboxing, 174-177
brackets, arrays, 60

392

browser, Silverlight testing, 362
bubble and assign, 235-236
business objects, 3

pbyref keyword, 238

C#
calling F#, 290
discriminated unions, 292-293
events, 288-289
F# tuples, 290-291
functions, passing to F# functions, 292
libraries, calling from F#, 284-289
methods, delegates, 287-288
objects, constructing, 285-286
option types, 293-294
overview, 283-284
records, 291-292
C#2.0
Database<T>, 13
Filter, 13,15
Func, 15
Func<T>, 13
functions, 211
IEnumerable<T>, 14
Map, 13
Predicate<T>, 13
Reduce, 13,15
C#3.0
lambda expression, 17
List<T>, 16
methods, new, 16
calling
functions, 209-210
methods, 140-141, 145
interface, 179-180
scenarios, 284-285
carried type, 56
casting, 171
boxing/unboxing, 174-177
downcasting, 172-173
flexible types, 173
upcasting, 172
chaining constructors, 127
character types, 42
choose function, 262-263
Church, Lorenzo, 17
Class attribute, 201
class libraries, 4
class marker, 125-126
class methods, currying, 217

ClassCastException — constructors

ClassCastException, 173
classes
access modifiers, 155-157
BlameAttribute, 203
class marker, 125-126
constructor methods, creating, 126-131
constructors, multiple, 127
creating, 131
DelegateEvent types, 152-154
delegates, 149-152
MulticastDelegate, 151
subscribing, 150
types, 151
end marker, 125-126
events, 149
subscribing, 150
Exception, 205
fields, 126
mutable, 126
static, 147
val keyword, 126
functions, 211
members
member keyword, 132
methods, 140-146
properties, 132-140
static members, 146-149
methods, definition, 140
System.String, 42
type extensions, 157-158
type keyword, 125

clauses
as, 128
elif, 48

inherit, 164
CLI Producer, 203
Clojure, 283
cloning records, 121-122
closures, 222
CMYK (cyan/yellow/magenta/black) color, 109
collection abstractions, 257-258
foreach statement, 258
collections, subsets, 258
filter function, 259
partition, 259-260
color values, 109
COM+/Enterprise Services, 4
comments, 31-32
documentation, 32
XML and, 32
multi-line, 32
single-line, 32
comparison, 174-177

comparison constraint, 188
comparison operators, 39-40
compile-time-only type constraints, 215

complex composite types
abbreviations, 105-106
discriminated union types, 109-114
enum types, 106-109
record types, 119-123
implicit members, 123
structs, 114-117
pattern-matching and, 118-119
value type implicit members, 117-118
component containers, 4
composite types
arrays
access, 61
construction, 60-61
functions, 61-65
using, 72-73
lists, 65
access, 68-70
construction, 66—68
methods, 70-72
using, 72-73
maps
access, 80-81
construction, 79-80
functions, 81-82
option types, 55-58
functions, 57-58
sequences, 74-79
sets, 82—83
tuples, 58-60
composition, 272-273
advanced, 278-279
applying, 275-279
backward composition (<<), 274-275
forward composition (>>), 273-274
Conditional attribute, 200
Console.WriteLine method, 129
constant patterns, 88-89
constants, decimal, 38
constraints. See type constraints
constructor constraint, 188
constructors
chaining, 127
creating, 126-131
definition, 127
derived types, 164
inheritance, 163-166
multiple, 127
primary, 128
copying data, 129

393

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

consuming services — DumpInternals method

logic, 129
self-identifiers, 128
value types, 116
consuming services
service stub generation, 385-388
writing service consumer, 388-389
consumption of custom attributes, 205-206
containers, 4
control flow, expressions, 47
create function, 60
CreateTableFor function, 308
Curry, Haskell, 20
currying, 20, 216
custom attributes, 197-198
AbstractClass, 201
assembly attributes, 201-202
AutoOpen, 202
Class, 201
Conditional, 200
consumption, 205-206
creating, 203-205
DefaultMember, 202
EntryPoint, 198-199
GetCustomAttributes() method, 205
Interface, 201
NonSerializable, 202
Obsolete, 199-200
ParamArray, 200-201
Serializable, 202
Struct, 201
CustomComparison, 175
CustomEquality, 175

data binding
design time, 368-370
programmatic, 371-372
data mutation, 232-233
avoiding, 233-235
bubble and assign, 235-236
message passing, 238-239
passing by reference, 238
reference calls, 236-238
data structures, custom, 8-9
data types, 247
recursively redefined, 253-254
databases
adding data, FAR, 304-305
connections, creating, 298
delete operations, 301-302
deleting data, FAR, 305-306

394

filtering, 300-301
insert operations, 301-302
overview, 297-298
predicates, 304
queries, FAR, 304
reading data, 299-300
FAR, 303-304
table creation, FAR, 308
update operations, 301-302
updating data, FAR, 305
debugging, 229-230
decimal constants, 38
decisions, 47-49
declarations, static members, 146
DeepClone () method, 232
DefaultMember, 202
defining
interfaces, 180-181
operators, 147-148
delegate constraints, 189
delegate strategy, 12-17
DelegateEvent types, 152-154
delegates, 149
methods and, 287-288
MulticastDelegate, 151
subscribing, 150
types, 151
delete operations in databases, 301-302
deleting database data, FAR, 305-306
dependencies, FAR, 306
derived classes
constructors, 164
methods, customizing, 169
properties, 164
Descendents () method, 320-321
design patterns, 4
designer tools (Silverlight Toolkit), 366-368
destructive update operator, 134
directives, preprocessor, 33-34
discriminated union patterns, 93
discriminated union types, 109-114,
292-293
pattern-matching, 110
tree-based structures, 111
do expression, 130
documentation comments, 32
XML and, 32
domain types, 3
DoQuery action, 350
downcasting, 172-173
DRY (Don’t Repeat Yourself), 8
duck typing, 99
DumpInternals method, 200

element transformations — function calls

element transformations, 260
choose function, 262-263
map function, 260-262
elif clauses, 48
#else directive, 33
encapsulating state in types, 249-251
end marker, 125-126
#endif directive, 33
EndInvoke method, 151
Enterprise Java Beans, 4
EntryPoint, 198-199
enum types, 106-109
enumeration type constraints, 189
equality, 117, 174-177
equality constraint, 187
Equals() method, 117
Equals method, 174
Event.add function, 154
Event.filter function, 154
Eventing, 210
events, 149, 210, 288289
ProcessExit, 150
subscribing, 150, 289
Exception class, 205
exceptions, 50-51, 251-252
raising, 52-53
throwing, 52-53
try...finally, 52
try...with, 51
types, defining, 53
explicit member constraint, 189-190
expressions
control flow, 47
do, 130
lambda, 222-223
let, 130
object expressions, 181
pattern matching, 86-87
range, arrays, 60
sequence, 61
versus statements, 27-28
extensions
members, 157
methods, 157

F#
called by C#, 290
lexical structure, 31

F# Silverlight Library, 359, 363-365
failing fast, 248
FAR (F# Active Record)
adding data, 304-305
deleting data, 305-306
dependencies, 306
library, 308
queries, processing, 309-314
querying data, 304
reading data, 303-304
table creation, 308
updating data, 305
use case, 315
utility routines, 307-308
faultyMethod method, 205
fields
classes, 126
inheritance, 163-166
mutable, 126
static, 147
val keyword, 126
initializing, 121
FIFO (first-in-first-out), 184
Filter, 15
filter function, 259
filtering, databases, 300-301
first class functions, 218-223
flexible types, 173
floating-point types, 40-41
fold function, 265-266
for loops, 50

FOR operations, implementation, 314-315

ForEach function, 220
foreach statement, 258
Forecast’r, 342
controller, 349
DoQuery action, 350
For action, 351
index action, 349-350
setup, 349
model, 343-344
repository, creating, 344-348
view, creating, 352-355
view helpers, 351-352
weather result, 348
Where On Earth ID, 345-346
forward composition (>>), 273-274
forward pipe (I>), 270-271
frameworks, 4
FSharpLibrary, 291
Func<T>, 13
function calls, 209-210
abstract inheritance, 210

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

395

function pointers — IDbConnection interface

Eventing, 210
function pointers, 210
function pointers, 210
functions

allHighAndLowAttributes, 321

arguments, 211-215
automatic generalization, 211-212
generic type, 214
partial application, 215-218
statically resolved type parameters, 215
type constraints, 214

Array.create, 60

arrays, 62-65
application operations, 64-65
meta functions, 63-64

banana clips, 96

C#, 211

choose, 262-263

classes, 211

create, 60

CreateTableFor, 308

currying, 216

Event.add, 154

Event.filter, 154

filter, 259

first class, 218-223

fold, 265-266

ForEach, 220

getWorldStateChanges, 236

higher-order, 17, 219-221

inline keyword, 212-213

lambda calculus, 19-20

leastFactor, 235

map, 260-262

Map.ofList, 79

maps, 8§1-82

mathematical, 210

methods and, 140

module functions, 258

nextParam(), 311
option types, S7-58
paramList (), 311

ParseCriteria, 310
partition, 259-260
passing, 17

passing to F# functions, 292
pipelining, 21-22

pow, 218

recursive, 218-219
reduce, 264-265
removeDuplicates, 250
restrictions, 217-218
return values, 211-215

396

runtime creation, 221
closures, 222
lambda expressions, 222-223
partial application and, 223
scan, 266-267
storing, 221
tail recursion optimization, 211
type annotations, 213-214
type inference, 211
usdToEuro, 44
functors, 19

generic types, 214
generics, 9
overview, 183-184
statically resolved type parameters, explicit member
constraint, 189-190
type constraints, 186-187
comparison constraint, 188
constructor constraint, 188
delegate constraints, 189
enumeration type constraints, 189
equality constraint, 187
null constraint, 188
reference type constraints, 188-189
type constraint, 187
unmanaged constraints, 189
value type constraint, 188-189
type parameters, 185-186
get () method, 133
GetCustomAttributes() method, 205
GetEnumerator () method, 74
GetHashCode () method, 118
GetHashCode method, 174
getWorldStateChanges function, 236
guarded blocks, 50

hash tags, 33-34
hashing, 174-177
higher-order functions, 17, 219-221

IClonable interface, 179

IComparable interface, 179
IComparable.CompareTo () interface method, 149
IDbConnection interface, 298

identifiers — language-wide type inference

identifiers, 32-33
illegal, 33
self-identifiers, 128
IEnumerable<T>, 14
IEnumerator, 74
if construct, 47-49
#if directive, 33
illegal identifiers, 33
immutability, 26-27
asynchronous workflows and, 228
data mutation, 232-239
performance considerations, 239-245
arrays, 242
lists, 239-242
records, 243
sequences, 242-243
structs, 243-245
tuples, 243
immutable classes, outputs, 228
implicit conversions, 172
indexer properties, 136-140
inequality, 117
inferred relativity, 117
inherit clause, 164
inheritance
abstract, 210
casting, 171
boxing/unboxing, 174-177
downcasting, 172-173
flexible types, 173
upcasting, 172
constructors, 163-166
fields, 163-166
interfaces
definition, 180-181
implementation, 177-180
method calling, 179-180
object expressions, 181
overriding and, 166-167
abstract members, 168-169
default, 169-171
overview, 161-162
structs, 117
System.Object class, 162
initialization
fields, 121
named properties, 135-136
properties, 285-286
inline keyword, 211-213
inlined functions, 213
input type, converting to output type, 271

input validation, partial-case active patterns, 97

insert operations in databases, 301-302

instances, InterestType, 186
int property, 133
InterestType instance, 186
Interface attribute, 201
interface keyword, 178

interface methods, IComparable.CompareTo(), 149

interfaces
defining, 180-181
IClonable, 179
IComparable, 179
IDbConnection, 298
implementation, 177-180
methods
calling, 179-180
defining, 180
properties, defining, 180
query interface, implementing, 313-314
intrinsic extensions, 157
IS-A relationship, 162
Isolated Storage, 358
iter method, 112
iteration, foreach statement, 258

JVM (Java Virtual Machine), 361

keywords, 32
as, 92
with, 134
abstract, 168, 170
byref, 238
inline, 211-213
interface, 178
member, 132
module, 193-195
mutable, 116,126, 131
new, 131
open, 191-192
override, 166
protected, 155
rec, 218
seq, 74
then, 47,127
type, 106, 114-115, 125
val, 126

lambda calculus, 17-22
functions, 19-20

lambda expression, 17,222-223

language-wide type inference, 25

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

397

Leaf element — methods

Leaf element, 331
leaky abstraction, 342
leastFactor functions, 235
let binding, 130
methods, 140
let expression, 130
lexical closures, 222
lexical structure, 31
libraries
C#, calling from F#, 284-289
calling from C#, 289-294
class libraries, 4
LIFO (last-in-first-out), 185
line charts (Silverlight Toolkit), 365-366
#line directive, 33
linear data, 257
LINQ (Language-Integrated Query), 16
LINQ-to-XML
processing XML, 322-324
querying XML, 320-322
reading XML, 318-320
Linux, Silverlight, 359
list patterns, 92
lists, 65, 239-242
access, 68-70
construction, 66—-68
methods
application operations, 71-72
meta functions, 70-71
using, 72-73
List<T>, 17
literal byte arrays, 42
literal patterns, 90-91
literal values, 44-45
local data state safety, 229-232
looping
for, 50
sequences and, 74

while/do, 49-50

map function, 260-262
Map.ofList function, 79

mapping, object relational mapping, 302-303

maps
access, 80-81
construction, 79-80
functions, 81-82
mathematical functions, 210
member binding, 140
member-declared elements, 156
member keyword, 132

398

member type parameters, 186
members
extension members, 157
member keyword, 132
methods
arity, 142
calling, 140-141
definition, 140
functions and, 140
let binding, 140
member binding, 140
named parameters, 143-144
optional parameters, 144-146
overloaded, 142-143
return type, 141
properties, 132-140
indexer properties, 136-140
static members
declaring, 146
operator overloading, 147-149
type extensions, 158
MemoryStream, 325
message passing, data mutation and, 238-239
meta functions
arrays, 63-64
lists, 70~71
sequences, 76-77
method signatures, syntax, 168
methods
arity, 142
BeginInvoke, 151
calling, 140-141, 145
scenarios, 284-285
Console.WriteLine, 129
DeepClone(), 232
definition, 140
delegates, 287-288
Descendents(), 320-321
DumpInternals, 200
EndInvoke, 151
Equals, 174
Equals(), 117
extension methods, 157
faultyMethod, 205
functions and, 140
get(), 133
GetCustomAttributes(), 20§
GetEnumerator(), 74
GetHashCode, 174
GetHashCode (), 118
interface
calling, 179-180
IComparable.CompareTo(), 149

Microsoft.FSharp.Core.LanguagePrimitives — overriding

iter, 112
let binding, 140
lists
application operations, 71-72
meta functions, 70-71
member binding, 140
named parameters, 143-144
optional parameters, 144-146
overloaded, 142-143
overriding, 117
parameters, order, 143-144
remove, 289
restrictions, 217-218
return type, 141
TestMethod(), 199
ToString(), 111, 166
Microsoft.FSharp.Core.LanguagePrimitives, 118
Microsoft.FSharp.Core.Operators module, operators,
39
ML Programming Language, The, 168
module functions, 258
module keyword, 193-195
modules
defining, 193-195
referencing, 193
Moonlight, 359
moving average calculation, 372-373
multi-case active patterns, 96, 99-101
XML and, 330-335
multi-core, 4
multi-line comments, 32
MulticastDelegate, 151
multiline string literals, 42
mutable keyword, 116, 126
let binding, 131
mutation. See data mutation

named parameters, 143-144
named patterns, 89-90
named properties, initialization, 135-136
namespaces

defining, 192-193

nesting, 193

referencing, 191-192
nativeint type, 39
nesting, namespaces, 193
.NET programs, immutability, 26
new keyword, 131
Neward, Ted, 302
nextParam() function, 311

NHibernate, 302
NoComparison, 175
Node element, 331
NoEquality, 175
NonSerializable attribute, 202
notation, arrow-based, 168
null
constant value, 89
constraint, 188
parameter, 286-287
numeric types, 38-40

object-oriented languages
edges, 4
goals, 3—-4
object relational mapping, 302-303
objects
C#, constructing, 285-286
expressions, 181
Reflection, 205
Obsolete attribute, 198-200
OCaml, 31
open keyword, 191-192
operators
algebraic, 38
binary, 148
bitwise, 40
comparison, 39-40
defining, 147-148
destructive update operator, 134
Microsoft.FSharp.Core.Operators module, 39
overloading, 147-149
right-associative, 67
unary, 148
upcase, 68
option types, 55-57, 249
from C#,293-294
functions, 57-58
optional parameters, 144-146
Option<T>, 249
OR patterns, 90
ORMs (object relational mapping), 302-303
overloaded methods, 142-143
overloading operators, 147-149
override keyword, 166
overriding
inheritance and, 166-167
abstract members, 168-169
default, 169-171
methods, 117

399

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

packaging — protected keyword

tuples, 91
variable-binding, 89-90
packaging when clause, 94
modules performance considerations, immutability and, 239
defining, 193-195 arrays, 242
referencing, 193 lists, 239-242
namespaces records, 243
defining, 192-193 sequences, 242-243
referencing, 191-192 structs, 243-245
ParamArray attribute, 200-201 tuples, 243
paramEnumerator, 311 performance-sensitive code, 67
parameterized types, 184 Petricek, Tomas, 342
parameters pipelining
member type, 186 applying, 275-279
named, 143-144 backward pipe (<l), 271-272
null, 286-287 converting to, 276-277
optional, 144-146 forward pipe (I>), 270-271
type parameters, 185-186 functions, 21-22
paramList () function, 311 point value type, 115-116
parse tree, 309-314 pointers, function pointers, 210
ParseCriteria, 312-313 pow function, 218
ParseCriteria function, 310 predicateParser routine, 310
parsing, syntax, 25-26 predicates, 304
partial application of arguments to functions, predicate<T>, 13
215-218 preprocessor directives, 33-34
runtime creation and, 223 PRG Pattern, 350
partial-case active patterns, 96, 97-99 primary constructor, 128
XML and, 336-339 copying data, 129
partition function, 259-260 declaring, 115
passing by reference, 238 logic, 129
passing functions, 17 primitive types, 37
to F# functions, 292 ProcessExit event, 150
passing messages, data mutation and, 238-239 processing XML
pattern guards, 94-95 LINQ-to-XML, 322-324
pattern matching XML DOM, 328
discriminated union types, 110 program-wide state safety, 226-229
expressions, 86-87 programmatic data binding, 371-372
overview, 85-88 properties
structs and, 118-119 accessing, 135
syntax, 85-86 declaration, 23
patterns, 4 defining, 132-133
AND, 90 derived classes, 164
as, 92 get () method, 133
active, 95-96 indexer properties, 136-140
array, 93 initializing, 285-286
constant patterns, 88-89 int, 133
discriminated union, 93 named, initialization, 135-136
list, 92 read/write, member definition, 133
literal, 90-91 static, 146
named, 89-90 string, 133
OR, 90 TargetSite, 205
record, 93-94 protected keyword, 155

400

queries — Silverlight

queries
FAR, 304
interface, implementing, 313-314
LINQ-to-XML, 320-322
processing, FAR, 309-314
XML DOM, 327-328
queryString, 311

rachel, 90
raising exceptions, 52-53
range expressions, arrays, 60
RBG (red/green/blue) color, 109
read/write properties, member definition, 133
reading data, 299-300
FAR, 303-304
reading XML
LINQ-to-XML, 318-320
XML DOM, 326-327
rec keyword, 218
record patterns, 93-94
record types, 119-123
cloning records, 121-122
implicit members, 123
records
from C#,291-292
cloning, 121-122
immutability and, 243
recursive functions, 218-219
recursively redefined data types, 253-254
reduce function, 264-265
reference calls, 236-238
reference type constraints, 188-189
ReferenceEquality, 175
references, passing by, 238
referencing
modules, 193
namespaces, 191-192
Reflection objects, 205
remove method, 289
removeDuplicates function, 250
repository, Forecast’r, creating, 344-348
RequiresQualifiedaAccess attribute, 107
restrictions
functions, 217-218
methods, 217-218
return type, methods, 141
return values, 211-215

RIA (Rich Internet Application), 357
right-associative operators, 67
runtime
function creation, 221
closures, 222
lambda expressions, 222-223
partial application and, 223
preconditions, 248

scan function, 266-267
Scheme, 283
scoping, 115
searches, 13
self-identifiers, 128
seq keyword, 74
sequence expressions, 61
SequenceFrom, overload, 314
sequences, 74-79
application operations, 78-79
immutability and, 242-243
loops, 74
meta functions, 76-77
Serializable attribute, 198,202
service controller
helping, 381-382
rendering weather, 381

Service Oriented Architecture. See SOA (Service-Oriented

Architecture)
service stub generation, 385-388
services, 4
consuming
service stub generation, 385-388
writing service consumer, 388-389
domain models, 380
weather service
contract, 378-379
implementation, 383
service controller, 381-382
service host implementation, 383-385
sets, 82-83
significant whitespace, 34-35
Silverlight
application, 361-363
data binding
design time, 368-370
programmatic, 371-372
developer requirements, 359-360
F# Silverlight Library, 359, 363-365
Isolated Storage, 358

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

401

Silverlight Application Template Wizard — type extensions

Linux, 359
moving average calculation, 372-373
overview, 357-358
Silverlight Toolkit, 359
area charts, 365-366
designer tools, 366-368
line charts, 365-366
software runtime, 359-360
testing in browser, 362
XAML, 362-363
XAP, 362
Silverlight Application Template Wizard, 361-362
single-case active patterns, 96-97
single-line comments, 32
SOA (Service-Oriented Architecture), 4, 377
Specificcall, 310
specificity, 248-254
Spolsky, Joel, 342
Spring, 4
SQL (Structured Query Language), 297-298
command objects, executing, 313
StackoverFlowException, 219
state, 225-226
encapsulating in types, 249-251
state flow, 252-253
state safety
local data, 229-232
program-wide, 226-229
statements
foreach, 258
versus expressions, 27-28
static fields, 147
static members
declaring, 146
operator overloading, 147-149
static property, 146
statically resolved type parameters, 215
explicit member constraint, 189-190
storing functions, 221
Strategy, 10-12
delegate, 12-17
string property, 133
string types, 42
strings, concatenating, 42
Struct attribute, 201
structs
immutability and, 243-245
inheritance, 117
pattern-matching and, 118-119
value type implicit members, 117-118
value types, 114
structural equivalence, 58
StructuralComparison, 175

402

StructureEquality, 175
subscribing to delegates/events, 150, 289
subsets, 258

filter function, 259

partition function, 259-260
syntax, 24, 33

arrays, 61

method signatures, 168

parsing, 25-26

pattern matching, 85-86

System.Collections.IStructuralEquatable interface,

175
System.IEquatable, 175
System.Object class, inheritance, 162
System.String class, 42

tables, creating, 308
tail recursion optimization, 211
TargetSite property, 205
TestMethod() method, 199
then keyword, 47, 127
throwing exceptions, 52-53
ToString() method, 111, 166
transformations, 260
choose function, 262-263
map function, 260-262

tree-based structures, discriminated unions and, 111

try...finally block, 52
try...with block, 51
tuple patterns, 91
structs and pattern matching, 119
tuples, 58-60
immutability and, 243
in C# programs, 290-291
type abbreviations, 105-106
type annotations, functions, 213-214
type constraints, 186-187, 214
comparison constraint, 188
compile-time-only, 215
constructor constraint, 188
delegate constraints, 189
enumeration type constraints, 189
equality constraint, 187
null constraint, 188
reference type constraints, 188-189
type constraint, 187
unmanaged constraints, 189
value type constraint, 188-189
type declaration syntax, 23
type extensions, 157-158
extension members, 157

type inference — weather service

intrinsic extensions, 157
member access, 158
type inference, 22-26, 184, 211
language-wide, 25
type keyword, 106
classes, 125
value types, 114-115
type parameters, 185-186
member type parameters, 186
type patterns, 51
type-safe collections, 184
types
access modifiers, 156
ambiguously typed data, 247-248
bigint type, 38
bool type, 37
Boolean types, 37
carried, 56
complex composite
abbreviations, 105-106
discriminated union types, 109-114
enum types, 106-109
record types, 119-123
structs, 114-119
composite, 55
option, 55-58
tuples, 58-60
DelegateEvent, 152-154
delegates, 151
domain types, 3
encapsulating state, 249-251
enum types, 106-109
exceptions, defining, 53
flexible, 173
floating-point, 40-41
language-wide type inference, 26
nativeint type, 39
numeric types, 38-40
option types, 249
parameterized, 184
UDTs (user-defined types), 3-4
unativeint type, 39
unit, 43
units-of-measure, 43-44

UDTs (user-defined types), 3-4
unary operators, 148
unativeint type, 39

unbox call, 174

underscore (_) as wildcard, 86

unit type, 43

units-of-measure types, 43-44
unmanaged constraints, 189

upcast operators, 68

upcasting, 172

update operations in databases, 301-302

update operator, destructive update operator, 134

updating database data, FAR, 305
usdToEuro function, 44

utilities, paramEnumerator, 311
utility routines, FAR, 307-308

val keyword, 126
validation, abstracting, 18
value type constraint, 188-189
value types
constructors, 116
creating, 114-115
implicit members, 117-118
Point, 115-116
structs, 114
variable-binding patterns, 89-90
Vietnam of Computer Science, The, 302
Visual Studio
project templates, 360-361
Silverlight
application, 361-363
F# Silverlight Library, 363-365
testing in browser, 362
XAML, 362-363
XAP, 362

WCF (Windows Communication Foundation), 202

weather forecast site, 342
controller, 349
For action, 351
DoQuery action, 350
index action, 349-350
setup, 349
model, 343-344
repository, creating, 344-348
view, creating, 352-355
view helpers, 351-352
weather result, 348
Where On Earth ID, 345-346
weather service
contract, 378-379

Advance Review Copy - Not For Resale
If you enjoyed this book, post a review at your favorite online bookseller.

403

when clause — zero-bit-pattern initialization

service controller
helping, 381-382
implementation, 382
rendering weather, 381
service host implementation, 383-385
service implementation, 383
when clause, patterns, 94
Where On Earth ID, 345-346
while/do loops, 49-50
whitespace, 34-35

wildcard character, partial-case active patterns, 98

wildcard clause, 90
wildcard pattern, 52
wildcards, _ (underscore), 86
with keyword, 134
WPF (Windows Presentation Framework), 360
writing XML, 325
to memory, 325
XML DOM, 329

XAML, 362-363
files, 360
resources, 369-370
Silverlight, 361-363

404

XAP files, 358, 362
XAttribute objects, 321
XDocuments, 319-322
XElement, 323
XML DOM, 325-326
processing XML, 328
querying XML, 327-328
reading XML, 326-327
writing XML, 329
XML (eXtensible Markup Language)
active patterns, 329-330
multicase, 330-335
partial-case, 336-339
documentation comments and, 32
LINQ-to-XML, reading XML, 318-320
overview, 317-318
processing
LINQ-to-XML, 322-324
XML DOM, 328
reading, LINQ-to-XML and, 318-320
writing, 325
to memory, 325
XML DOM, 329
XmlDocument object, 326
xmlReader object, 326
XmlWriter, 325
zero-bit-pattern initialization, 116

	Contents at a Glance
	Copyright
	Dedication
	Credits
	About the Author
	Acknowledgments
	Contents
	Foreword
	Introduction
	Part 0: Beginnings
	Chapter 1: Primer

	Part I: Basics
	Chapter 2: Lexical Structure
	Chapter 3: Primitive Types
	Chapter 4: Control Flow
	Chapter 5: Composite Types
	Chapter 6: Pattern Matching

	Part II: Objects
	Chapter 7: Complex Composite Types
	Chapter 8: Classes
	Chapter 9: Inheritance
	Chapter 10: Generics
	Chapter 11: Packaging
	Chapter 12: Custom Attributes

	Part III: Functional Programming
	Chapter 13: Functions
	Chapter 14: Immutable Data
	Chapter 15: Data Types
	Chapter 16: List Processing
	Chapter 17: Pipelining and Composition

	Part IV: Applications
	Chapter 18: C#
	Chapter 19: Databases
	Chapter 20: XML
	Chapter 21: ASP.NET MVC
	Chapter 22: Silverlight
	Chapter 23: Services

	Index

