
Java statics
 

 
When is a static not static?

A JavaGeeks.com
White Paper

Ted Neward
http://www.javageeks.com/~tneward
tneward@javageeks.com
12September2001



Abstract

Java programmers, like C++ programmers, expect that static instances (namely, static fields) are unique
within the JVM. While true for most Java code, the real story behind the "static" keyword is more
complex than that. What's worse, it can rear its head to bite Java programmers in very sensitive areas in
complex environments like a servlet container or EJB server.

Problem discussion

Ask any Java programmer what "static" means as a keyword within the Java language, and they'll toss
back an answer along the lines of "statics mean that only one instance exists across all instances of the
class" or that "static means you have no this pointer". In fact, this is a true statement, most of the time.

The Java Language Specification (1.0) backs this idea up entirely. Quoting directly from section 8.3.1.1
of the JLS, it reads:

8.3.1.1 static Fields: If a field is declared static, there exists exactly one incarnation of the
field, no matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes called a class variable, is incarnated when the class is initialized
(12.4).

--Java Language Specification (1.0)

So, in fact, the Java Language Specification agrees with the Java programmers of the world, claiming
that there exists "exactly one incarnation of the field". What's more, running this code:

/**

* Simple class that just prints the number of instances that have been

* created thus far.

*/

public class Dummy

{

public static int staticCount = 0;

public Dummy()

{

staticCount++;

System.out.println("Instance #" + staticCount + " constructed.");

}

}

Dummy.java: Class with statics

import java.io.*;

import java.net.*;

/**

* Simple test--instantiate three Dummy objects, and watch the staticCount

* static field get incremented, as we would expect.

*/

public class StaticTest

{

public static void main (String args[])

throws Exception

{

new Dummy();

new Dummy();

new Dummy();

Java statics: When is a static not static?

A Javageeks.com White Paper Page 2 By Ted Neward



}

}

StaticTest.java: Driver for Dummy class

produces a result that most Java programmers will comfortably predict with exacting accuracy:

C:\Projects\Papers\JavaStatics\src>java StaticTest

Instance #1 constructed.

Instance #2 constructed.

Instance #3 constructed.

C:\Projects\Papers\JavaStatics\src>

Three Dummy instances were created-three constructors fired, and each constructor in turn incremented
the "exactly one incarnation of the field" called Dummy.staticCount.

So why is it, then, that this code produces such radically different results1?

import java.io.*;

import java.net.*;

/**

* Load the same class (with statics) into two separate ClassLoaders.

* See what the class' reported static count is.

*/

public class StaticTestClassLoader

{

public static void main (String args[])

throws Exception

{

URL[] url = { new File("subdir").toURL() };

URLClassLoader cl1 = new URLClassLoader(url);

URLClassLoader cl2 = new URLClassLoader(url);

URLClassLoader cl3 = new URLClassLoader(url);

cl1.loadClass("Dummy").newInstance();

cl2.loadClass("Dummy").newInstance();

cl3.loadClass("Dummy").newInstance();

}

}

StaticTestClassLoader.java: Statics are broken?

C:\Projects\Papers\JavaStatics\src>md subdir

C:\Projects\Papers\JavaStatics\src>move Dummy.class subdir

C:\Projects\Papers\JavaStatics\src>java StaticTestClassLoader

Instance #1 constructed.

Instance #1 constructed.

Instance #1 constructed.

C:\Projects\Papers\JavaStatics\src>

What happened?

Solution discussion

To answer the question quite technically, ClassLoaders happened. Or, more accurately, multiple
ClassLoaders happened. At first glance, this may seem to be a horrendous bug; in fact, this is exactly
the behavior specified by the Java Virtual Machine Specification, although it takes a bit of reading to "get

Java statics: When is a static not static?

A Javageeks.com White Paper Page 3 By Ted Neward



it" entirely.

The key point centers, as you might guess from reading the above "broken" code, around the Java
ClassLoader mechanism. (If you are unfamiliar with ClassLoaders, you may want to brush up on the
concepts in ClassLoaders [sbpj] , [JVMS] , [] before proceeding.) The key relevant point in the Java
Language Specification comes in Section 12.1.1, talking about the processes a class goes through
when loaded into a ClassLoader.

To start, we examine the third paragraph of section 12.1.2:

Preparation involves allocation of static storage and any data structures that are used
internally by the virtual machine, such as method tables. If a problem is detected during
preparation, then an error is thrown. Preparation is described further in 12.3.2.

The preparation step of loading a class is the point at which static allocation is made (initialization of
static fields to predefined values occurs later, but that's irrelevant to this discussion). This, then, is when
statics are created for the class. Unfortunately, what's not stated clearly in the Specification is that these
statics are created on a per ClassLoader instance basis.

Bracha and Liang, in their paper on ClassLoaders at the OOPSLA '98 conference [LiangBracha] ,
discuss the notion of ClassLoaders providing multiple namespaces, areas which conceptually isolate
different versions of the same class from one another. This allows Java to load different versions of the
same class into the same JVM, so long as they are loaded through different ClassLoaders.

This is, in fact, exactly what the StaticTestClassLoader example from above does-it creates three
separate URLClassLoader instances, each of which looks for the Dummy class, and creates a new
instance. When each URLClassLoader instance is asked to load the Dummy class, it first delegates to
its parent ClassLoader2, the AppClassLoader. AppClassLoader, which is responsible for loading code
from the CLASSPATH, reports (after checking with its parent, and so on up the ClassLoader tree) that it
cannot find the class, and the new URLClassLoader instance checks itself. It knows about the "subdir"
directory in which the "Dummy.class" file resides, loads the code, and creates the static staticCount
instance for the Dummy class. A new instance of Dummy is created, and the Dummy constructor reports
its staticCount value, which at this point is "1".

Now we move to the second line of StaticTestClassLoader, which again creates a new URLClassLoader
to load Dummy. Once again, URLClassLoader delegates to its parent, AppClassLoader, who again
reports that it has no idea where the "Dummy" class lives3. Remember, it was the first URLClassLoader
that loaded the Dummy class a few seconds ago, and ClassLoaders never check with peer
ClassLoaders, only parents. Thus, the second URLClassLoader loads the Dummy clas, and as part of
that loading step, prepares the class all over again-which means it once again allocates space for the
static staticCount field! A new instance of Dummy is created, the Dummy constructor increments
cl2's Dummy.staticCount field, and reports its value: "1".

I could belabor the point by walking through this exercise again for URLClassLoader cl3, but by now
you should see the problem-statics are static only until we reach ClassLoader boundaries. Normally,
were Dummy to be found along the CLASSPATH4, it would be picked up by the AppClassLoader, of
which we always have just one, and the statics would have appeared to have been static across the
entire VM. As soon as we introduced multiple ClassLoaders, however, we complicated the picture, and
got exactly the response you saw earlier.

At this point, most Java programmers will be experiencing one of two possible reactions:

1. "Why do I care?", or
2. "Why doesn't Sun fix this obviously broken implementation?"

I'll answer the first reaction in just a second (but bear with me-you do care). As to the second reaction,
the honest response is "It's not a bug, it's a feature". By associating static instances to the ClassLoader
that loaded it, it's possible to do the "on-the-fly" upgrading of code mentioned in [sbpj] and [LiangBracha]
. That is, if the Dummy class were to change on disk between the
cl1.loadClass("Dummy").newInstance() and corresponding cl2 calls, then cl2 would actually

Java statics: When is a static not static?

A Javageeks.com White Paper Page 4 By Ted Neward



get the new version of Dummy, even while the old version peacefully coexisted within the JVM in cl1.
This has powerful implications for creating Java applications that can be safely upgraded on the server
without taking the server down, making your system administrators that much closer to achieving
"Five-Nines" availability5. Without this feature, servlets couldn't be reloaded "on the fly".

Which brings us back to point #1: you do care. You care, because two very important environments,
servlets and EJB, both make use of ClassLoaders in a big way.

Consider the ubiquitous servlet environment, in which the servlet container supports "servlet
reloading"-that is, change the servlet class on disk and the servlet container will automatically reload the
servlet, even while old versions of the servlet are still executing (presumably in other Threads). The only
way a servlet container can make this work is to load the new servlet into a different ClassLoader than
the original version.

This is where "you do care" comes into play. Most servlet classes that access a relational database
typically want to minimize the number of Connections they make to the database. In order to best
support this, most servlets will make use of a Singleton [GOF] ConnectionManager to share
Connections across multiple servlets:

/**

*

*/

public class DatabaseManager

{

/**

* Marked private to prevent accidental instantiation

*/

private DatabaseManager()

{

// Do the usual thing here

}

/**

* Gain access to the singleton DatabaseManager instance

*/

public DatabaseManager instance()

{

return staticInstance;

}

private static DatabaseManager staticInstance =

new DatabaseManager();

// . . .

}

A Singleton ConnectionManager

Notice that this Singleton instance relies on the static method instance-and the associated static field
staticInstance-to ensure that only one instance of ConnectionManager exists.

Here's the part where you care: when the servlet container loads your servlet into its own ClassLoader
(call it scl1, an instance of the servlet container's class ServletClassLoader), the ClassLoader notices
that your servlet code references a class called DatabaseManager. Because classes (a) remember the
ClassLoader that loaded them, and (b) default to using that ClassLoader to loading any dependent code,
scl1 is asked to load DatabaseManager.

By this point, the problem starts becoming obvious-because scl1 is its own ClassLoader, the static
staticInstance field exists only as far as scl1 can reach. When a new version of your servlet is
loaded6, the servlet container will create a new ServletClassLoader instance (call it scl2), load your
servlet, notice that your servlet references DatabaseManager, look to load DatabaseManager, and get
fresh copies of the static staticInstance field. Suddenly, a Singleton isn't a Singleton anymore, and

Java statics: When is a static not static?

A Javageeks.com White Paper Page 5 By Ted Neward



twice as many Connection objects are being created.

Consequences

Unfortunately, the "solution" here isn't much of a solution-Sun isn't going to change this part of
ClassLoaders anytime soon, if at all7. So the only real solution is knowledge: be aware of this, and take
steps to lessen its impact on your code where possible.

Within the servlet environment (and EJB, since EJB servers will create their own ClassLoaders for much
the same reason servlet containers do), however, you do have a more practical solution: move the
DatabaseManager code someplace where a ClassLoader further up the delegation chain will find it. This
means one of two places: putting the DatabaseManager class somewhere on the CLASSPATH (so it
gets picked up by the AppClassLoader), or else put it into the Extensions directory (so it gets picked up
by the ExtClassLoader). Because the ServletClassLoader will always8 delegate to its parent
ClassLoader, by placing DatabaseManager into the AppClassLoader or ExtClassLoader namespace, its
static staticInstance will appear to stretch across the entire JVM and thereby use only one instance
of DatabaseManager.

An an exercise to prove this, go back to the StaticTestClassLoader example from a few pages back, and
re-run it, this time with Dummy.class in the current directory (where it will get picked up by the
AppClassLoader instead of the individual URLClassLoader instances in the main method):

C:\Projects\Papers\JavaStatics\src>move subdir\Dummy.class .

C:\Projects\Papers\JavaStatics\src>java StaticTestClassLoader

Instance #1 constructed.

Instance #2 constructed.

Instance #3 constructed.

C:\Projects\Papers\JavaStatics\src>

Exactly what you would have expected to see, six pages ago, because now Dummy has been loaded
into the AppClassLoader namespace.

Summary

By this point, it's obvious that statics really aren't-they're static only as far as the ClassLoader
boundaries stretch. Multiple ClassLoaders will defeat the "static-ness" of fields across the same version
of the same class over multiple ClassLoaders, much to the surprise of most Java developers.

Unfortunately, this has some frightening implications: it means, most of all, that Singletons really aren't
Singletons, either. If the Singleton is loaded into a ClassLoader that doesn't stretch across the entire VM
(and, to be quite honest, the only ClassLoader that is guaranteed to stretch across the entire VM is the
bootstrap ClassLoader, the parent to the ExtClassLoader), then the Singleton may in fact end up with
multiple instances. If the Singleton in turn loads native code, you're in for a rough time, because JNI in
Java2 doesn't allow a native library to be loaded more than once, even across ClassLoader boundaries.

The best solution, then, is to simply be aware of this, and try whenever possible to make sure that
Singleton classes (like DatabaseManager) get loaded as far up the ClassLoader tree as possible.
Fortunately, this is a problem that won't rear its ugly head very often, and is usually pretty quickly
solvable ("Drop the .jar file into the jre/lib/ext directory") in most environments.

Notes

[1] To make this test work as shown, you must move the Dummy.class file into a subdirectory called
"subdir" that does not reside on the CLASSPATH. I explain this later in the paper, trust me. (The

Java statics: When is a static not static?

A Javageeks.com White Paper Page 6 By Ted Neward



accompanying Ant script does all this in the "run-staticCL-Dummy" target.)
[2] All of this is covered in excrutiating detail in [sbpj] and [JVMS] .
[3] Remember, this depends on the fact that "Dummy.class" is off the CLASSPATH; if not,
AppClassLoader will pick it up and the class will be bound to the AppClassLoader.
[4] Which is why you had to move Dummy.class into the "subdir" subdirectory, or else the
AppClassLoader would have found it along the CLASSPATH, which typically includes the current
directory.
[5] "Five-Nines", which is talked about in [sbpj] , is the idea of having servers available (that is, not down
for repairs, maintenance or upgrade) 99.999% of the time. .001% of a year is just about five minutes-it's
an incredibly ambitious goal, but definitely within the realm of possibility-telephone companies hit this
metric relatively often.
[6] Or, in fact, when a new servlet request comes in-in order to support seamless versioning of servlets, a
servlet container may run each and every servlet request in its own ClassLoader, although this is
obviously not the most efficient way to handle the situation.
[7] Actually, as you might have guessed, I'm hoping they never do-this is an incredibly powerful feature.
[8] Assuming it's written in conformance with the Java2 ClassLoader model, which is not always a safe
assumption-see [sbpj] for details.

Bibliography

• [LiangBracha] "Dynamic Class Loading in the Java Virtual Machine", by Sheng Liang and
Gilad Bracha (presented at 13 th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA '98), Vancouver, BC,
Canada, October, 1998) (http://java.sun.com/people/gbracha/classloaders.ps).

• [JVMS] Java Virtual Machine Specification, 2nd Ed, by Tim Lindholm, Frank Yellin.
Addison-Wesley (ISBN: 0201432943)

• [SBPJ] Server-Based Java Programming , by Ted Neward. Manning (ISBN: 1884777716)
• [GOF] Design Patterns, by Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides.

Addison-Wesley (ISBN: ???)
• [IJ2VM] Inside the Java2 Virtual Machine, by Bill Venners. (ISBN: )

Copyright

This paper, and accompanying source code, is copyright © 2001 by Ted Neward. All rights reserved. Usage for any other purpose than
personal or non-commercial education is expressly prohibited without written consent. Code is copywrit under the Lesser GNU Public
License (LGPL). For questions or concerns, contact author.

Colophon

This paper was written using a standard text editor, captured in a custom XML format, and rendered to PDF using the Apache Xalan
XSLT engine and the Apache FOP-0.17 XSL:FO engine. For information on the process, contact the author at
tneward@javageeks.com. Revision $Revision: 1.1 $, using whitePaper.xsl revision $Revision: 1.1 $.

Java statics: When is a static not static?

A Javageeks.com White Paper Page 7 By Ted Neward


